Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linethru Unicode version

Theorem linethru 24776
Description: If  A is a line containing two distinct points  P and  Q, then  A is the line through  P and  Q. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linethru  |-  ( ( A  e. LinesEE  /\  ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) )

Proof of Theorem linethru
Dummy variables  a 
b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellines 24775 . . 3  |-  ( A  e. LinesEE 
<->  E. n  e.  NN  E. a  e.  ( EE
`  n ) E. b  e.  ( EE
`  n ) ( a  =/=  b  /\  A  =  ( aLine b ) ) )
2 simpll1 994 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  n  e.  NN )
3 simpll2 995 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  a  e.  ( EE `  n ) )
4 simpll3 996 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  b  e.  ( EE `  n ) )
5 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  a  =/=  b
)
6 liness 24768 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
) )  ->  (
aLine b )  C_  ( EE `  n ) )
72, 3, 4, 5, 6syl13anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( aLine b )  C_  ( EE `  n ) )
8 simprll 738 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  P  e.  ( aLine b ) )
97, 8sseldd 3181 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  P  e.  ( EE `  n ) )
10 simprlr 739 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  Q  e.  ( aLine b ) )
117, 10sseldd 3181 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  Q  e.  ( EE `  n ) )
12 simplll 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  ->  P  e.  ( aLine b ) )
1312adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  e.  ( aLine b ) )
14 simpll1 994 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  n  e.  NN )
15 simpll2 995 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  e.  ( EE
`  n ) )
16 simpll3 996 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
b  e.  ( EE
`  n ) )
17 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  =/=  b )
18 simprrl 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  e.  ( EE `  n ) )
19 simprlr 739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  =/=  a )
2019necomd 2529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  =/=  P )
21 lineelsb2 24771 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  ( P  e.  ( EE `  n
)  /\  a  =/=  P ) )  ->  ( P  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine P ) ) )
2214, 15, 16, 17, 18, 20, 21syl132anc 1200 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( P  e.  ( aLine b )  -> 
( aLine b )  =  ( aLine P
) ) )
2313, 22mpd 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( aLine P
) )
24 linecom 24773 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  P  e.  ( EE `  n )  /\  a  =/=  P
) )  ->  (
aLine P )  =  ( PLine a ) )
2514, 15, 18, 20, 24syl13anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine P )  =  ( PLine a
) )
2623, 25eqtrd 2315 . . . . . . . . . . . . 13  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine a
) )
27 neeq2 2455 . . . . . . . . . . . . . . . . 17  |-  ( Q  =  a  ->  ( P  =/=  Q  <->  P  =/=  a ) )
2827anbi2d 684 . . . . . . . . . . . . . . . 16  |-  ( Q  =  a  ->  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  <->  ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a ) ) )
2928anbi1d 685 . . . . . . . . . . . . . . 15  |-  ( Q  =  a  ->  (
( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) ) )  <->  ( (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n ) ) ) ) )
3029anbi2d 684 . . . . . . . . . . . . . 14  |-  ( Q  =  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  <->  ( (
( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) ) ) ) ) )
31 oveq2 5866 . . . . . . . . . . . . . . 15  |-  ( Q  =  a  ->  ( PLine Q )  =  ( PLine a ) )
3231eqeq2d 2294 . . . . . . . . . . . . . 14  |-  ( Q  =  a  ->  (
( aLine b )  =  ( PLine Q
)  <->  ( aLine b )  =  ( PLine a ) ) )
3330, 32imbi12d 311 . . . . . . . . . . . . 13  |-  ( Q  =  a  ->  (
( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) )  <->  ( (
( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine a
) ) ) )
3426, 33mpbiri 224 . . . . . . . . . . . 12  |-  ( Q  =  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) ) )
35 simp1 955 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b ) )
36 simp2l 981 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )
3735, 36, 10syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  e.  ( aLine b ) )
38 simp1l1 1048 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  n  e.  NN )
39 simp1l2 1049 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  e.  ( EE `  n
) )
40 simp1l3 1050 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  b  e.  ( EE `  n
) )
41 simp1r 980 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  =/=  b )
42 simp2rr 1025 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  e.  ( EE `  n
) )
43 simp3 957 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  =/=  a )
4443necomd 2529 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  =/=  Q )
45 lineelsb2 24771 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  ( Q  e.  ( EE `  n
)  /\  a  =/=  Q ) )  ->  ( Q  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine Q ) ) )
4638, 39, 40, 41, 42, 44, 45syl132anc 1200 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( Q  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine Q ) ) )
4737, 46mpd 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( aLine Q ) )
48 linecom 24773 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  Q  e.  ( EE `  n )  /\  a  =/=  Q
) )  ->  (
aLine Q )  =  ( QLine a ) )
4938, 39, 42, 44, 48syl13anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine Q )  =  ( QLine a ) )
5047, 49eqtrd 2315 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( QLine a ) )
51 simpll 730 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q )  ->  P  e.  ( aLine b ) )
5236, 51syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( aLine b ) )
5352, 50eleqtrd 2359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( QLine a ) )
54 simp2rl 1024 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( EE `  n
) )
55 simp2lr 1023 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  =/=  Q )
5655necomd 2529 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  =/=  P )
57 lineelsb2 24771 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  ( Q  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  Q  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  =/=  P ) )  -> 
( P  e.  ( QLine a )  -> 
( QLine a )  =  ( QLine P
) ) )
5838, 42, 39, 43, 54, 56, 57syl132anc 1200 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( P  e.  ( QLine a )  ->  ( QLine a )  =  ( QLine P ) ) )
5953, 58mpd 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( QLine a )  =  ( QLine P ) )
60 linecom 24773 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  ( Q  e.  ( EE `  n )  /\  P  e.  ( EE `  n )  /\  Q  =/=  P ) )  -> 
( QLine P )  =  ( PLine Q
) )
6138, 42, 54, 56, 60syl13anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( QLine P )  =  ( PLine Q ) )
6250, 59, 613eqtrd 2319 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( PLine Q ) )
63623expa 1151 . . . . . . . . . . . . 13  |-  ( ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  /\  Q  =/=  a )  -> 
( aLine b )  =  ( PLine Q
) )
6463expcom 424 . . . . . . . . . . . 12  |-  ( Q  =/=  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) ) )
6534, 64pm2.61ine 2522 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) )
6665expr 598 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) )  ->  (
aLine b )  =  ( PLine Q ) ) )
679, 11, 66mp2and 660 . . . . . . . . 9  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( aLine b )  =  ( PLine Q ) )
6867ex 423 . . . . . . . 8  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  -> 
( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q )  ->  (
aLine b )  =  ( PLine Q ) ) )
69 eleq2 2344 . . . . . . . . . . 11  |-  ( A  =  ( aLine b )  ->  ( P  e.  A  <->  P  e.  (
aLine b ) ) )
70 eleq2 2344 . . . . . . . . . . 11  |-  ( A  =  ( aLine b )  ->  ( Q  e.  A  <->  Q  e.  (
aLine b ) ) )
7169, 70anbi12d 691 . . . . . . . . . 10  |-  ( A  =  ( aLine b )  ->  ( ( P  e.  A  /\  Q  e.  A )  <->  ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) ) ) )
7271anbi1d 685 . . . . . . . . 9  |-  ( A  =  ( aLine b )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  <->  ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q ) ) )
73 eqeq1 2289 . . . . . . . . 9  |-  ( A  =  ( aLine b )  ->  ( A  =  ( PLine Q
)  <->  ( aLine b )  =  ( PLine Q ) ) )
7472, 73imbi12d 311 . . . . . . . 8  |-  ( A  =  ( aLine b )  ->  ( (
( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) )  <->  ( (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q )  -> 
( aLine b )  =  ( PLine Q
) ) ) )
7568, 74syl5ibrcom 213 . . . . . . 7  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  -> 
( A  =  ( aLine b )  -> 
( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) ) ) )
7675expimpd 586 . . . . . 6  |-  ( ( n  e.  NN  /\  a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  ->  (
( a  =/=  b  /\  A  =  (
aLine b ) )  ->  ( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) ) ) )
77763expa 1151 . . . . 5  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n ) )  /\  b  e.  ( EE `  n ) )  ->  ( (
a  =/=  b  /\  A  =  ( aLine b ) )  -> 
( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) ) ) )
7877rexlimdva 2667 . . . 4  |-  ( ( n  e.  NN  /\  a  e.  ( EE `  n ) )  -> 
( E. b  e.  ( EE `  n
) ( a  =/=  b  /\  A  =  ( aLine b ) )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  A  =  ( PLine Q ) ) ) )
7978rexlimivv 2672 . . 3  |-  ( E. n  e.  NN  E. a  e.  ( EE `  n ) E. b  e.  ( EE `  n
) ( a  =/=  b  /\  A  =  ( aLine b ) )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  A  =  ( PLine Q ) ) )
801, 79sylbi 187 . 2  |-  ( A  e. LinesEE  ->  ( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) ) )
81803impib 1149 1  |-  ( ( A  e. LinesEE  /\  ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    C_ wss 3152   ` cfv 5255  (class class class)co 5858   NNcn 9746   EEcee 24516  Linecline2 24757  LinesEEclines2 24759
This theorem is referenced by:  hilbert1.2  24778  lineintmo  24780
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-ec 6662  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-ee 24519  df-btwn 24520  df-cgr 24521  df-ofs 24606  df-ifs 24662  df-cgr3 24663  df-colinear 24664  df-fs 24665  df-line2 24760  df-lines2 24762
  Copyright terms: Public domain W3C validator