Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkr0f Structured version   Unicode version

Theorem lkr0f 29966
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.)
Hypotheses
Ref Expression
lkr0f.d  |-  D  =  (Scalar `  W )
lkr0f.o  |-  .0.  =  ( 0g `  D )
lkr0f.v  |-  V  =  ( Base `  W
)
lkr0f.f  |-  F  =  (LFnl `  W )
lkr0f.k  |-  K  =  (LKer `  W )
Assertion
Ref Expression
lkr0f  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  <->  G  =  ( V  X.  {  .0.  } ) ) )

Proof of Theorem lkr0f
StepHypRef Expression
1 lkr0f.d . . . . . . 7  |-  D  =  (Scalar `  W )
2 eqid 2438 . . . . . . 7  |-  ( Base `  D )  =  (
Base `  D )
3 lkr0f.v . . . . . . 7  |-  V  =  ( Base `  W
)
4 lkr0f.f . . . . . . 7  |-  F  =  (LFnl `  W )
51, 2, 3, 4lflf 29935 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G : V --> ( Base `  D
) )
6 ffn 5594 . . . . . 6  |-  ( G : V --> ( Base `  D )  ->  G  Fn  V )
75, 6syl 16 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G  Fn  V )
87adantr 453 . . . 4  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  ( K `  G )  =  V )  ->  G  Fn  V )
9 lkr0f.o . . . . . . 7  |-  .0.  =  ( 0g `  D )
10 lkr0f.k . . . . . . 7  |-  K  =  (LKer `  W )
111, 9, 4, 10lkrval 29960 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  =  ( `' G " {  .0.  } ) )
1211eqeq1d 2446 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  <->  ( `' G " {  .0.  }
)  =  V ) )
1312biimpa 472 . . . 4  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  ( K `  G )  =  V )  ->  ( `' G " {  .0.  }
)  =  V )
14 fvex 5745 . . . . . . 7  |-  ( 0g
`  D )  e. 
_V
159, 14eqeltri 2508 . . . . . 6  |-  .0.  e.  _V
1615fconst2 5951 . . . . 5  |-  ( G : V --> {  .0.  }  <-> 
G  =  ( V  X.  {  .0.  }
) )
17 fconst4 5959 . . . . 5  |-  ( G : V --> {  .0.  }  <-> 
( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
1816, 17bitr3i 244 . . . 4  |-  ( G  =  ( V  X.  {  .0.  } )  <->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
198, 13, 18sylanbrc 647 . . 3  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  ( K `  G )  =  V )  ->  G  =  ( V  X.  {  .0.  } ) )
2019ex 425 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  ->  G  =  ( V  X.  {  .0.  } ) ) )
2118biimpi 188 . . . . . 6  |-  ( G  =  ( V  X.  {  .0.  } )  -> 
( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
2221adantl 454 . . . . 5  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
23 simpr 449 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  G  =  ( V  X.  {  .0.  } ) )
24 eqid 2438 . . . . . . . . . . 11  |-  (LFnl `  W )  =  (LFnl `  W )
251, 9, 3, 24lfl0f 29941 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  ( V  X.  {  .0.  }
)  e.  (LFnl `  W ) )
2625adantr 453 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( V  X.  {  .0.  } )  e.  (LFnl `  W )
)
2723, 26eqeltrd 2512 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  G  e.  (LFnl `  W ) )
281, 9, 24, 10lkrval 29960 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  (LFnl `  W )
)  ->  ( K `  G )  =  ( `' G " {  .0.  } ) )
2927, 28syldan 458 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( K `  G )  =  ( `' G " {  .0.  } ) )
3029eqeq1d 2446 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( ( K `
 G )  =  V  <->  ( `' G " {  .0.  } )  =  V ) )
31 ffn 5594 . . . . . . . . 9  |-  ( G : V --> {  .0.  }  ->  G  Fn  V
)
3216, 31sylbir 206 . . . . . . . 8  |-  ( G  =  ( V  X.  {  .0.  } )  ->  G  Fn  V )
3332adantl 454 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  G  Fn  V
)
3433biantrurd 496 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( ( `' G " {  .0.  } )  =  V  <->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) ) )
3530, 34bitrd 246 . . . . 5  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( ( K `
 G )  =  V  <->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) ) )
3622, 35mpbird 225 . . . 4  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( K `  G )  =  V )
3736ex 425 . . 3  |-  ( W  e.  LMod  ->  ( G  =  ( V  X.  {  .0.  } )  -> 
( K `  G
)  =  V ) )
3837adantr 453 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( G  =  ( V  X.  {  .0.  } )  ->  ( K `  G )  =  V ) )
3920, 38impbid 185 1  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  <->  G  =  ( V  X.  {  .0.  } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958   {csn 3816    X. cxp 4879   `'ccnv 4880   "cima 4884    Fn wfn 5452   -->wf 5453   ` cfv 5457   Basecbs 13474  Scalarcsca 13537   0gc0g 13728   LModclmod 15955  LFnlclfn 29929  LKerclk 29957
This theorem is referenced by:  lkrscss  29970  eqlkr  29971  lkrshp  29977  lkrshp3  29978  lkrshpor  29979  lfl1dim  29993  lfl1dim2N  29994  lkr0f2  30033  lclkrlem1  32378  lclkrlem2j  32388  lclkr  32405  lclkrs  32411  mapd0  32537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-plusg 13547  df-0g 13732  df-mnd 14695  df-grp 14817  df-mgp 15654  df-rng 15668  df-lmod 15957  df-lfl 29930  df-lkr 29958
  Copyright terms: Public domain W3C validator