Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkr0f Unicode version

Theorem lkr0f 29581
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.)
Hypotheses
Ref Expression
lkr0f.d  |-  D  =  (Scalar `  W )
lkr0f.o  |-  .0.  =  ( 0g `  D )
lkr0f.v  |-  V  =  ( Base `  W
)
lkr0f.f  |-  F  =  (LFnl `  W )
lkr0f.k  |-  K  =  (LKer `  W )
Assertion
Ref Expression
lkr0f  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  <->  G  =  ( V  X.  {  .0.  } ) ) )

Proof of Theorem lkr0f
StepHypRef Expression
1 lkr0f.d . . . . . . 7  |-  D  =  (Scalar `  W )
2 eqid 2408 . . . . . . 7  |-  ( Base `  D )  =  (
Base `  D )
3 lkr0f.v . . . . . . 7  |-  V  =  ( Base `  W
)
4 lkr0f.f . . . . . . 7  |-  F  =  (LFnl `  W )
51, 2, 3, 4lflf 29550 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G : V --> ( Base `  D
) )
6 ffn 5554 . . . . . 6  |-  ( G : V --> ( Base `  D )  ->  G  Fn  V )
75, 6syl 16 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G  Fn  V )
87adantr 452 . . . 4  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  ( K `  G )  =  V )  ->  G  Fn  V )
9 lkr0f.o . . . . . . 7  |-  .0.  =  ( 0g `  D )
10 lkr0f.k . . . . . . 7  |-  K  =  (LKer `  W )
111, 9, 4, 10lkrval 29575 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  =  ( `' G " {  .0.  } ) )
1211eqeq1d 2416 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  <->  ( `' G " {  .0.  }
)  =  V ) )
1312biimpa 471 . . . 4  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  ( K `  G )  =  V )  ->  ( `' G " {  .0.  }
)  =  V )
14 fvex 5705 . . . . . . 7  |-  ( 0g
`  D )  e. 
_V
159, 14eqeltri 2478 . . . . . 6  |-  .0.  e.  _V
1615fconst2 5911 . . . . 5  |-  ( G : V --> {  .0.  }  <-> 
G  =  ( V  X.  {  .0.  }
) )
17 fconst4 5919 . . . . 5  |-  ( G : V --> {  .0.  }  <-> 
( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
1816, 17bitr3i 243 . . . 4  |-  ( G  =  ( V  X.  {  .0.  } )  <->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
198, 13, 18sylanbrc 646 . . 3  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  ( K `  G )  =  V )  ->  G  =  ( V  X.  {  .0.  } ) )
2019ex 424 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  ->  G  =  ( V  X.  {  .0.  } ) ) )
2118biimpi 187 . . . . . 6  |-  ( G  =  ( V  X.  {  .0.  } )  -> 
( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
2221adantl 453 . . . . 5  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
23 simpr 448 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  G  =  ( V  X.  {  .0.  } ) )
24 eqid 2408 . . . . . . . . . . 11  |-  (LFnl `  W )  =  (LFnl `  W )
251, 9, 3, 24lfl0f 29556 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  ( V  X.  {  .0.  }
)  e.  (LFnl `  W ) )
2625adantr 452 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( V  X.  {  .0.  } )  e.  (LFnl `  W )
)
2723, 26eqeltrd 2482 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  G  e.  (LFnl `  W ) )
281, 9, 24, 10lkrval 29575 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  (LFnl `  W )
)  ->  ( K `  G )  =  ( `' G " {  .0.  } ) )
2927, 28syldan 457 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( K `  G )  =  ( `' G " {  .0.  } ) )
3029eqeq1d 2416 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( ( K `
 G )  =  V  <->  ( `' G " {  .0.  } )  =  V ) )
31 ffn 5554 . . . . . . . . 9  |-  ( G : V --> {  .0.  }  ->  G  Fn  V
)
3216, 31sylbir 205 . . . . . . . 8  |-  ( G  =  ( V  X.  {  .0.  } )  ->  G  Fn  V )
3332adantl 453 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  G  Fn  V
)
3433biantrurd 495 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( ( `' G " {  .0.  } )  =  V  <->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) ) )
3530, 34bitrd 245 . . . . 5  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( ( K `
 G )  =  V  <->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) ) )
3622, 35mpbird 224 . . . 4  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( K `  G )  =  V )
3736ex 424 . . 3  |-  ( W  e.  LMod  ->  ( G  =  ( V  X.  {  .0.  } )  -> 
( K `  G
)  =  V ) )
3837adantr 452 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( G  =  ( V  X.  {  .0.  } )  ->  ( K `  G )  =  V ) )
3920, 38impbid 184 1  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  <->  G  =  ( V  X.  {  .0.  } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2920   {csn 3778    X. cxp 4839   `'ccnv 4840   "cima 4844    Fn wfn 5412   -->wf 5413   ` cfv 5417   Basecbs 13428  Scalarcsca 13491   0gc0g 13682   LModclmod 15909  LFnlclfn 29544  LKerclk 29572
This theorem is referenced by:  lkrscss  29585  eqlkr  29586  lkrshp  29592  lkrshp3  29593  lkrshpor  29594  lfl1dim  29608  lfl1dim2N  29609  lkr0f2  29648  lclkrlem1  31993  lclkrlem2j  32003  lclkr  32020  lclkrs  32026  mapd0  32152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-plusg 13501  df-0g 13686  df-mnd 14649  df-grp 14771  df-mgp 15608  df-rng 15622  df-lmod 15911  df-lfl 29545  df-lkr 29573
  Copyright terms: Public domain W3C validator