Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlspeqN Unicode version

Theorem lkrlspeqN 29430
Description: Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrlspeq.f  |-  F  =  (LFnl `  W )
lkrlspeq.l  |-  L  =  (LKer `  W )
lkrlspeq.d  |-  D  =  (LDual `  W )
lkrlspeq.o  |-  .0.  =  ( 0g `  D )
lkrlspeq.j  |-  N  =  ( LSpan `  D )
lkrlspeq.w  |-  ( ph  ->  W  e.  LVec )
lkrlspeq.h  |-  ( ph  ->  H  e.  F )
lkrlspeq.g  |-  ( ph  ->  G  e.  ( ( N `  { H } )  \  {  .0.  } ) )
Assertion
Ref Expression
lkrlspeqN  |-  ( ph  ->  ( L `  G
)  =  ( L `
 H ) )

Proof of Theorem lkrlspeqN
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 lkrlspeq.g . . . . 5  |-  ( ph  ->  G  e.  ( ( N `  { H } )  \  {  .0.  } ) )
2 eldifi 3374 . . . . 5  |-  ( G  e.  ( ( N `
 { H }
)  \  {  .0.  } )  ->  G  e.  ( N `  { H } ) )
31, 2syl 15 . . . 4  |-  ( ph  ->  G  e.  ( N `
 { H }
) )
4 lkrlspeq.d . . . . . 6  |-  D  =  (LDual `  W )
5 lkrlspeq.w . . . . . . 7  |-  ( ph  ->  W  e.  LVec )
6 lveclmod 15958 . . . . . . 7  |-  ( W  e.  LVec  ->  W  e. 
LMod )
75, 6syl 15 . . . . . 6  |-  ( ph  ->  W  e.  LMod )
84, 7lduallmod 29412 . . . . 5  |-  ( ph  ->  D  e.  LMod )
9 lkrlspeq.f . . . . . 6  |-  F  =  (LFnl `  W )
10 eqid 2358 . . . . . 6  |-  ( Base `  D )  =  (
Base `  D )
11 lkrlspeq.h . . . . . 6  |-  ( ph  ->  H  e.  F )
129, 4, 10, 5, 11ldualelvbase 29386 . . . . 5  |-  ( ph  ->  H  e.  ( Base `  D ) )
13 eqid 2358 . . . . . 6  |-  (Scalar `  D )  =  (Scalar `  D )
14 eqid 2358 . . . . . 6  |-  ( Base `  (Scalar `  D )
)  =  ( Base `  (Scalar `  D )
)
15 eqid 2358 . . . . . 6  |-  ( .s
`  D )  =  ( .s `  D
)
16 lkrlspeq.j . . . . . 6  |-  N  =  ( LSpan `  D )
1713, 14, 10, 15, 16lspsnel 15859 . . . . 5  |-  ( ( D  e.  LMod  /\  H  e.  ( Base `  D
) )  ->  ( G  e.  ( N `  { H } )  <->  E. k  e.  ( Base `  (Scalar `  D
) ) G  =  ( k ( .s
`  D ) H ) ) )
188, 12, 17syl2anc 642 . . . 4  |-  ( ph  ->  ( G  e.  ( N `  { H } )  <->  E. k  e.  ( Base `  (Scalar `  D ) ) G  =  ( k ( .s `  D ) H ) ) )
193, 18mpbid 201 . . 3  |-  ( ph  ->  E. k  e.  (
Base `  (Scalar `  D
) ) G  =  ( k ( .s
`  D ) H ) )
20 eqid 2358 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
21 eqid 2358 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
2220, 21, 4, 13, 14, 5ldualsbase 29392 . . . 4  |-  ( ph  ->  ( Base `  (Scalar `  D ) )  =  ( Base `  (Scalar `  W ) ) )
2322rexeqdv 2819 . . 3  |-  ( ph  ->  ( E. k  e.  ( Base `  (Scalar `  D ) ) G  =  ( k ( .s `  D ) H )  <->  E. k  e.  ( Base `  (Scalar `  W ) ) G  =  ( k ( .s `  D ) H ) ) )
2419, 23mpbid 201 . 2  |-  ( ph  ->  E. k  e.  (
Base `  (Scalar `  W
) ) G  =  ( k ( .s
`  D ) H ) )
25 eqid 2358 . . . 4  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
26 lkrlspeq.l . . . 4  |-  L  =  (LKer `  W )
2753ad2ant1 976 . . . 4  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  ->  W  e.  LVec )
28 simp2 956 . . . . 5  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
k  e.  ( Base `  (Scalar `  W )
) )
29 simp3 957 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  ->  G  =  ( k
( .s `  D
) H ) )
30 eldifsni 3826 . . . . . . . . 9  |-  ( G  e.  ( ( N `
 { H }
)  \  {  .0.  } )  ->  G  =/=  .0.  )
311, 30syl 15 . . . . . . . 8  |-  ( ph  ->  G  =/=  .0.  )
32313ad2ant1 976 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  ->  G  =/=  .0.  )
3329, 32eqnetrrd 2541 . . . . . 6  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
( k ( .s
`  D ) H )  =/=  .0.  )
34 eqid 2358 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  D )
)  =  ( 0g
`  (Scalar `  D )
)
3520, 25, 4, 13, 34, 7ldual0 29406 . . . . . . . . . . 11  |-  ( ph  ->  ( 0g `  (Scalar `  D ) )  =  ( 0g `  (Scalar `  W ) ) )
36353ad2ant1 976 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
( 0g `  (Scalar `  D ) )  =  ( 0g `  (Scalar `  W ) ) )
3736eqeq2d 2369 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
( k  =  ( 0g `  (Scalar `  D ) )  <->  k  =  ( 0g `  (Scalar `  W ) ) ) )
38 orc 374 . . . . . . . . 9  |-  ( k  =  ( 0g `  (Scalar `  D ) )  ->  ( k  =  ( 0g `  (Scalar `  D ) )  \/  H  =  .0.  )
)
3937, 38syl6bir 220 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
( k  =  ( 0g `  (Scalar `  W ) )  -> 
( k  =  ( 0g `  (Scalar `  D ) )  \/  H  =  .0.  )
) )
40 lkrlspeq.o . . . . . . . . 9  |-  .0.  =  ( 0g `  D )
414, 5lduallvec 29413 . . . . . . . . . 10  |-  ( ph  ->  D  e.  LVec )
42413ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  ->  D  e.  LVec )
43223ad2ant1 976 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
( Base `  (Scalar `  D
) )  =  (
Base `  (Scalar `  W
) ) )
4428, 43eleqtrrd 2435 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
k  e.  ( Base `  (Scalar `  D )
) )
45123ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  ->  H  e.  ( Base `  D ) )
4610, 15, 13, 14, 34, 40, 42, 44, 45lvecvs0or 15960 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
( ( k ( .s `  D ) H )  =  .0.  <->  ( k  =  ( 0g
`  (Scalar `  D )
)  \/  H  =  .0.  ) ) )
4739, 46sylibrd 225 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
( k  =  ( 0g `  (Scalar `  W ) )  -> 
( k ( .s
`  D ) H )  =  .0.  )
)
4847necon3d 2559 . . . . . 6  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
( ( k ( .s `  D ) H )  =/=  .0.  ->  k  =/=  ( 0g
`  (Scalar `  W )
) ) )
4933, 48mpd 14 . . . . 5  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
k  =/=  ( 0g
`  (Scalar `  W )
) )
50 eldifsn 3825 . . . . 5  |-  ( k  e.  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } )  <-> 
( k  e.  (
Base `  (Scalar `  W
) )  /\  k  =/=  ( 0g `  (Scalar `  W ) ) ) )
5128, 49, 50sylanbrc 645 . . . 4  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
k  e.  ( (
Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } ) )
52113ad2ant1 976 . . . 4  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  ->  H  e.  F )
5320, 21, 25, 9, 26, 4, 15, 27, 51, 52, 29lkreqN 29429 . . 3  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  G  =  ( k ( .s `  D ) H ) )  -> 
( L `  G
)  =  ( L `
 H ) )
5453rexlimdv3a 2745 . 2  |-  ( ph  ->  ( E. k  e.  ( Base `  (Scalar `  W ) ) G  =  ( k ( .s `  D ) H )  ->  ( L `  G )  =  ( L `  H ) ) )
5524, 54mpd 14 1  |-  ( ph  ->  ( L `  G
)  =  ( L `
 H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   E.wrex 2620    \ cdif 3225   {csn 3716   ` cfv 5337  (class class class)co 5945   Basecbs 13245  Scalarcsca 13308   .scvsca 13309   0gc0g 13499   LModclmod 15726   LSpanclspn 15827   LVecclvec 15954  LFnlclfn 29316  LKerclk 29344  LDualcld 29382
This theorem is referenced by:  lcdlkreqN  31881
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-1st 6209  df-2nd 6210  df-tpos 6321  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-n0 10058  df-z 10117  df-uz 10323  df-fz 10875  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-sca 13321  df-vsca 13322  df-0g 13503  df-mnd 14466  df-submnd 14515  df-grp 14588  df-minusg 14589  df-sbg 14590  df-subg 14717  df-cntz 14892  df-lsm 15046  df-cmn 15190  df-abl 15191  df-mgp 15425  df-rng 15439  df-ur 15441  df-oppr 15504  df-dvdsr 15522  df-unit 15523  df-invr 15553  df-drng 15613  df-lmod 15728  df-lss 15789  df-lsp 15828  df-lvec 15955  df-lshyp 29236  df-lfl 29317  df-lkr 29345  df-ldual 29383
  Copyright terms: Public domain W3C validator