Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlss Unicode version

Theorem lkrlss 29907
Description: The kernel of a linear functional is a subspace. (nlelshi 22656 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrlss.f  |-  F  =  (LFnl `  W )
lkrlss.k  |-  K  =  (LKer `  W )
lkrlss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lkrlss  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  e.  S )

Proof of Theorem lkrlss
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2296 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
3 eqid 2296 . . . 4  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
4 lkrlss.f . . . 4  |-  F  =  (LFnl `  W )
5 lkrlss.k . . . 4  |-  K  =  (LKer `  W )
61, 2, 3, 4, 5lkrval2 29902 . . 3  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  =  { x  e.  (
Base `  W )  |  ( G `  x )  =  ( 0g `  (Scalar `  W ) ) } )
7 ssrab2 3271 . . . 4  |-  { x  e.  ( Base `  W
)  |  ( G `
 x )  =  ( 0g `  (Scalar `  W ) ) } 
C_  ( Base `  W
)
87a1i 10 . . 3  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  { x  e.  ( Base `  W
)  |  ( G `
 x )  =  ( 0g `  (Scalar `  W ) ) } 
C_  ( Base `  W
) )
96, 8eqsstrd 3225 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  C_  ( Base `  W
) )
10 eqid 2296 . . . . . 6  |-  ( 0g
`  W )  =  ( 0g `  W
)
111, 10lmod0vcl 15675 . . . . 5  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  ( Base `  W
) )
1211adantr 451 . . . 4  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( 0g `  W )  e.  ( Base `  W
) )
132, 3, 10, 4lfl0 29877 . . . 4  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( G `  ( 0g `  W ) )  =  ( 0g `  (Scalar `  W ) ) )
141, 2, 3, 4, 5ellkr 29901 . . . 4  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( 0g `  W
)  e.  ( K `
 G )  <->  ( ( 0g `  W )  e.  ( Base `  W
)  /\  ( G `  ( 0g `  W
) )  =  ( 0g `  (Scalar `  W ) ) ) ) )
1512, 13, 14mpbir2and 888 . . 3  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( 0g `  W )  e.  ( K `  G
) )
16 ne0i 3474 . . 3  |-  ( ( 0g `  W )  e.  ( K `  G )  ->  ( K `  G )  =/=  (/) )
1715, 16syl 15 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  =/=  (/) )
18 simplll 734 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  W  e.  LMod )
19 simplr 731 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  r  e.  ( Base `  (Scalar `  W ) ) )
20 simpllr 735 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  G  e.  F )
21 simprl 732 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  x  e.  ( K `  G
) )
221, 4, 5lkrcl 29904 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  ( K `  G
) )  ->  x  e.  ( Base `  W
) )
2318, 20, 21, 22syl3anc 1182 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  x  e.  ( Base `  W
) )
24 eqid 2296 . . . . . . . 8  |-  ( .s
`  W )  =  ( .s `  W
)
25 eqid 2296 . . . . . . . 8  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
261, 2, 24, 25lmodvscl 15660 . . . . . . 7  |-  ( ( W  e.  LMod  /\  r  e.  ( Base `  (Scalar `  W ) )  /\  x  e.  ( Base `  W ) )  -> 
( r ( .s
`  W ) x )  e.  ( Base `  W ) )
2718, 19, 23, 26syl3anc 1182 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
r ( .s `  W ) x )  e.  ( Base `  W
) )
28 simprr 733 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  y  e.  ( K `  G
) )
291, 4, 5lkrcl 29904 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  y  e.  ( K `  G
) )  ->  y  e.  ( Base `  W
) )
3018, 20, 28, 29syl3anc 1182 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  y  e.  ( Base `  W
) )
31 eqid 2296 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
321, 31lmodvacl 15657 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) x )  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( (
r ( .s `  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
) )
3318, 27, 30, 32syl3anc 1182 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
) )
34 eqid 2296 . . . . . . . 8  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
35 eqid 2296 . . . . . . . 8  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
361, 31, 2, 24, 25, 34, 35, 4lfli 29873 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
r  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x
) ) ( +g  `  (Scalar `  W )
) ( G `  y ) ) )
3718, 20, 19, 23, 30, 36syl113anc 1194 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  ( G `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x ) ) ( +g  `  (Scalar `  W ) ) ( G `  y ) ) )
382, 3, 4, 5lkrf0 29905 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  ( K `  G
) )  ->  ( G `  x )  =  ( 0g `  (Scalar `  W ) ) )
3918, 20, 21, 38syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  ( G `  x )  =  ( 0g `  (Scalar `  W ) ) )
4039oveq2d 5890 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
r ( .r `  (Scalar `  W ) ) ( G `  x
) )  =  ( r ( .r `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) ) )
412lmodrng 15651 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
4218, 41syl 15 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (Scalar `  W )  e.  Ring )
4325, 35, 3rngrz 15394 . . . . . . . . 9  |-  ( ( (Scalar `  W )  e.  Ring  /\  r  e.  ( Base `  (Scalar `  W
) ) )  -> 
( r ( .r
`  (Scalar `  W )
) ( 0g `  (Scalar `  W ) ) )  =  ( 0g
`  (Scalar `  W )
) )
4442, 19, 43syl2anc 642 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
r ( .r `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
4540, 44eqtrd 2328 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
r ( .r `  (Scalar `  W ) ) ( G `  x
) )  =  ( 0g `  (Scalar `  W ) ) )
462, 3, 4, 5lkrf0 29905 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  y  e.  ( K `  G
) )  ->  ( G `  y )  =  ( 0g `  (Scalar `  W ) ) )
4718, 20, 28, 46syl3anc 1182 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  ( G `  y )  =  ( 0g `  (Scalar `  W ) ) )
4845, 47oveq12d 5892 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
( r ( .r
`  (Scalar `  W )
) ( G `  x ) ) ( +g  `  (Scalar `  W ) ) ( G `  y ) )  =  ( ( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) ) )
492lmodfgrp 15652 . . . . . . . 8  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
5018, 49syl 15 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (Scalar `  W )  e.  Grp )
5125, 3grpidcl 14526 . . . . . . . 8  |-  ( (Scalar `  W )  e.  Grp  ->  ( 0g `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) ) )
5250, 51syl 15 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  ( 0g `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )
5325, 34, 3grplid 14528 . . . . . . 7  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( 0g
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )  ->  (
( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
5450, 52, 53syl2anc 642 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
5537, 48, 543eqtrd 2332 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  ( G `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  ( 0g `  (Scalar `  W ) ) )
561, 2, 3, 4, 5ellkr 29901 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( ( r ( .s `  W ) x ) ( +g  `  W ) y )  e.  ( K `  G )  <->  ( (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
)  /\  ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( 0g
`  (Scalar `  W )
) ) ) )
5756ad2antrr 706 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
( ( r ( .s `  W ) x ) ( +g  `  W ) y )  e.  ( K `  G )  <->  ( (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
)  /\  ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( 0g
`  (Scalar `  W )
) ) ) )
5833, 55, 57mpbir2and 888 . . . 4  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  ( K `  G
) )
5958ralrimivva 2648 . . 3  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  ->  A. x  e.  ( K `  G ) A. y  e.  ( K `  G )
( ( r ( .s `  W ) x ) ( +g  `  W ) y )  e.  ( K `  G ) )
6059ralrimiva 2639 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  A. r  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( K `  G ) A. y  e.  ( K `  G
) ( ( r ( .s `  W
) x ) ( +g  `  W ) y )  e.  ( K `  G ) )
61 lkrlss.s . . 3  |-  S  =  ( LSubSp `  W )
622, 25, 1, 31, 24, 61islss 15708 . 2  |-  ( ( K `  G )  e.  S  <->  ( ( K `  G )  C_  ( Base `  W
)  /\  ( K `  G )  =/=  (/)  /\  A. r  e.  ( Base `  (Scalar `  W )
) A. x  e.  ( K `  G
) A. y  e.  ( K `  G
) ( ( r ( .s `  W
) x ) ( +g  `  W ) y )  e.  ( K `  G ) ) )
639, 17, 60, 62syl3anbrc 1136 1  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   {crab 2560    C_ wss 3165   (/)c0 3468   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   .rcmulr 13225  Scalarcsca 13227   .scvsca 13228   0gc0g 13416   Grpcgrp 14378   Ringcrg 15353   LModclmod 15643   LSubSpclss 15705  LFnlclfn 29869  LKerclk 29897
This theorem is referenced by:  lkrssv  29908  lkrlsp  29914  lkrlsp3  29916  lkrshp  29917  lclkrlem2f  32324  lclkrlem2n  32332  lclkrlem2v  32340  lcfrlem25  32379  lcfrlem35  32389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mgp 15342  df-rng 15356  df-ur 15358  df-lmod 15645  df-lss 15706  df-lfl 29870  df-lkr 29898
  Copyright terms: Public domain W3C validator