Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrshp4 Structured version   Unicode version

Theorem lkrshp4 29980
Description: A kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.)
Hypotheses
Ref Expression
lkrshp4.v  |-  V  =  ( Base `  W
)
lkrshp4.h  |-  H  =  (LSHyp `  W )
lkrshp4.f  |-  F  =  (LFnl `  W )
lkrshp4.k  |-  K  =  (LKer `  W )
lkrshp4.w  |-  ( ph  ->  W  e.  LVec )
lkrshp4.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lkrshp4  |-  ( ph  ->  ( ( K `  G )  =/=  V  <->  ( K `  G )  e.  H ) )

Proof of Theorem lkrshp4
StepHypRef Expression
1 lkrshp4.v . . . . 5  |-  V  =  ( Base `  W
)
2 lkrshp4.h . . . . 5  |-  H  =  (LSHyp `  W )
3 lkrshp4.f . . . . 5  |-  F  =  (LFnl `  W )
4 lkrshp4.k . . . . 5  |-  K  =  (LKer `  W )
5 lkrshp4.w . . . . 5  |-  ( ph  ->  W  e.  LVec )
6 lkrshp4.g . . . . 5  |-  ( ph  ->  G  e.  F )
71, 2, 3, 4, 5, 6lkrshpor 29979 . . . 4  |-  ( ph  ->  ( ( K `  G )  e.  H  \/  ( K `  G
)  =  V ) )
87orcomd 379 . . 3  |-  ( ph  ->  ( ( K `  G )  =  V  \/  ( K `  G )  e.  H
) )
9 neor 2690 . . 3  |-  ( ( ( K `  G
)  =  V  \/  ( K `  G )  e.  H )  <->  ( ( K `  G )  =/=  V  ->  ( K `  G )  e.  H
) )
108, 9sylib 190 . 2  |-  ( ph  ->  ( ( K `  G )  =/=  V  ->  ( K `  G
)  e.  H ) )
11 lveclmod 16183 . . . . . 6  |-  ( W  e.  LVec  ->  W  e. 
LMod )
125, 11syl 16 . . . . 5  |-  ( ph  ->  W  e.  LMod )
1312adantr 453 . . . 4  |-  ( (
ph  /\  ( K `  G )  e.  H
)  ->  W  e.  LMod )
14 simpr 449 . . . 4  |-  ( (
ph  /\  ( K `  G )  e.  H
)  ->  ( K `  G )  e.  H
)
151, 2, 13, 14lshpne 29854 . . 3  |-  ( (
ph  /\  ( K `  G )  e.  H
)  ->  ( K `  G )  =/=  V
)
1615ex 425 . 2  |-  ( ph  ->  ( ( K `  G )  e.  H  ->  ( K `  G
)  =/=  V ) )
1710, 16impbid 185 1  |-  ( ph  ->  ( ( K `  G )  =/=  V  <->  ( K `  G )  e.  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   ` cfv 5457   Basecbs 13474   LModclmod 15955   LVecclvec 16179  LSHypclsh 29847  LFnlclfn 29929  LKerclk 29957
This theorem is referenced by:  lkrpssN  30035  dochkrshp3  32260  lcfl9a  32377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-tpos 6482  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-0g 13732  df-mnd 14695  df-submnd 14744  df-grp 14817  df-minusg 14818  df-sbg 14819  df-subg 14946  df-cntz 15121  df-lsm 15275  df-cmn 15419  df-abl 15420  df-mgp 15654  df-rng 15668  df-ur 15670  df-oppr 15733  df-dvdsr 15751  df-unit 15752  df-invr 15782  df-drng 15842  df-lmod 15957  df-lss 16014  df-lsp 16053  df-lvec 16180  df-lshyp 29849  df-lfl 29930  df-lkr 29958
  Copyright terms: Public domain W3C validator