Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2 Unicode version

Theorem llnexchb2 30680
Description: Line exchange property (compare cvlatexchb2 30147 for atoms). (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l  |-  .<_  =  ( le `  K )
llnexch.j  |-  .\/  =  ( join `  K )
llnexch.m  |-  ./\  =  ( meet `  K )
llnexch.a  |-  A  =  ( Atoms `  K )
llnexch.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnexchb2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) )

Proof of Theorem llnexchb2
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp23 990 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Z  e.  N )
2 simp1 955 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  K  e.  HL )
3 eqid 2296 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
4 llnexch.n . . . . . 6  |-  N  =  ( LLines `  K )
53, 4llnbase 30320 . . . . 5  |-  ( Z  e.  N  ->  Z  e.  ( Base `  K
) )
61, 5syl 15 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Z  e.  ( Base `  K ) )
7 llnexch.j . . . . 5  |-  .\/  =  ( join `  K )
8 llnexch.a . . . . 5  |-  A  =  ( Atoms `  K )
93, 7, 8, 4islln3 30321 . . . 4  |-  ( ( K  e.  HL  /\  Z  e.  ( Base `  K ) )  -> 
( Z  e.  N  <->  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  Z  =  ( p  .\/  q ) ) ) )
102, 6, 9syl2anc 642 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( Z  e.  N  <->  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  Z  =  ( p  .\/  q ) ) ) )
111, 10mpbid 201 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Z  =  (
p  .\/  q )
) )
12 simp3r 984 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  X  =/=  Z )
1312necomd 2542 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Z  =/=  X )
14 simp11 985 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  K  e.  HL )
15 hllat 30175 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  K  e.  Lat )
1614, 15syl 15 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  K  e.  Lat )
17 simp2l 981 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  p  e.  A )
183, 8atbase 30101 . . . . . . . . . . . 12  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
1917, 18syl 15 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  p  e.  ( Base `  K
) )
20 simp2r 982 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  q  e.  A )
213, 8atbase 30101 . . . . . . . . . . . 12  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
2220, 21syl 15 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  q  e.  ( Base `  K
) )
23 simp121 1087 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  X  e.  N )
243, 4llnbase 30320 . . . . . . . . . . . 12  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
2523, 24syl 15 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  X  e.  ( Base `  K
) )
26 llnexch.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
273, 26, 7latjle12 14184 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( p  e.  ( Base `  K )  /\  q  e.  ( Base `  K )  /\  X  e.  ( Base `  K
) ) )  -> 
( ( p  .<_  X  /\  q  .<_  X )  <-> 
( p  .\/  q
)  .<_  X ) )
2816, 19, 22, 25, 27syl13anc 1184 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .<_  X  /\  q  .<_  X )  <->  ( p  .\/  q )  .<_  X ) )
29 simp3 957 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  p  =/=  q )
307, 8, 4llni2 30323 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  p  =/=  q
)  ->  ( p  .\/  q )  e.  N
)
3114, 17, 20, 29, 30syl31anc 1185 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
p  .\/  q )  e.  N )
3226, 4llncmp 30333 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( p  .\/  q )  e.  N  /\  X  e.  N )  ->  (
( p  .\/  q
)  .<_  X  <->  ( p  .\/  q )  =  X ) )
3314, 31, 23, 32syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  .<_  X  <->  ( p  .\/  q )  =  X ) )
3428, 33bitr2d 245 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =  X  <->  ( p  .<_  X  /\  q  .<_  X ) ) )
3534necon3abid 2492 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =/=  X  <->  -.  (
p  .<_  X  /\  q  .<_  X ) ) )
36 ianor 474 . . . . . . . 8  |-  ( -.  ( p  .<_  X  /\  q  .<_  X )  <->  ( -.  p  .<_  X  \/  -.  q  .<_  X ) )
3735, 36syl6bb 252 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =/=  X  <->  ( -.  p  .<_  X  \/  -.  q  .<_  X ) ) )
38 simpl11 1030 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  K  e.  HL )
3923adantr 451 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  X  e.  N )
40 simp122 1088 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  Y  e.  N )
4140adantr 451 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  Y  e.  N )
42 simpl2l 1008 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  p  e.  A )
43 simpl2r 1009 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  -> 
q  e.  A )
44 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  ->  -.  p  .<_  X )
45 simp13l 1070 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( X  ./\  Y )  e.  A )
4645adantr 451 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  -> 
( X  ./\  Y
)  e.  A )
47 llnexch.m . . . . . . . . . . 11  |-  ./\  =  ( meet `  K )
4826, 7, 47, 8, 4llnexchb2lem 30679 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( p  e.  A  /\  q  e.  A  /\  -.  p  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( p  .\/  q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( p  .\/  q ) ) ) )
4938, 39, 41, 42, 43, 44, 46, 48syl331anc 1207 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  p  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) )
5049ex 423 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( -.  p  .<_  X  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
51 simpl11 1030 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  K  e.  HL )
5223adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  X  e.  N )
5340adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  Y  e.  N )
54 simpl2r 1009 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
q  e.  A )
55 simpl2l 1008 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  p  e.  A )
56 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  ->  -.  q  .<_  X )
5745adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( X  ./\  Y
)  e.  A )
5826, 7, 47, 8, 4llnexchb2lem 30679 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( q  e.  A  /\  p  e.  A  /\  -.  q  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( q  .\/  p
)  <->  ( X  ./\  Y )  =  ( X 
./\  ( q  .\/  p ) ) ) )
5951, 52, 53, 54, 55, 56, 57, 58syl331anc 1207 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( q  .\/  p )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( q  .\/  p ) ) ) )
607, 8hlatjcom 30179 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  .\/  q
)  =  ( q 
.\/  p ) )
6151, 55, 54, 60syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( p  .\/  q
)  =  ( q 
.\/  p ) )
6261breq2d 4051 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  .<_  ( q 
.\/  p ) ) )
6361oveq2d 5890 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( X  ./\  (
p  .\/  q )
)  =  ( X 
./\  ( q  .\/  p ) ) )
6463eqeq2d 2307 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  =  ( X 
./\  ( p  .\/  q ) )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( q  .\/  p ) ) ) )
6559, 62, 643bitr4d 276 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N )  /\  (
( X  ./\  Y
)  e.  A  /\  X  =/=  Z ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  p  =/=  q )  /\  -.  q  .<_  X )  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) )
6665ex 423 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( -.  q  .<_  X  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
6750, 66jaod 369 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( -.  p  .<_  X  \/  -.  q  .<_  X )  ->  (
( X  ./\  Y
)  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
6837, 67sylbid 206 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  (
( p  .\/  q
)  =/=  X  -> 
( ( X  ./\  Y )  .<_  ( p  .\/  q )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) ) )
69 neeq1 2467 . . . . . . 7  |-  ( Z  =  ( p  .\/  q )  ->  ( Z  =/=  X  <->  ( p  .\/  q )  =/=  X
) )
70 breq2 4043 . . . . . . . 8  |-  ( Z  =  ( p  .\/  q )  ->  (
( X  ./\  Y
)  .<_  Z  <->  ( X  ./\ 
Y )  .<_  ( p 
.\/  q ) ) )
71 oveq2 5882 . . . . . . . . 9  |-  ( Z  =  ( p  .\/  q )  ->  ( X  ./\  Z )  =  ( X  ./\  (
p  .\/  q )
) )
7271eqeq2d 2307 . . . . . . . 8  |-  ( Z  =  ( p  .\/  q )  ->  (
( X  ./\  Y
)  =  ( X 
./\  Z )  <->  ( X  ./\ 
Y )  =  ( X  ./\  ( p  .\/  q ) ) ) )
7370, 72bibi12d 312 . . . . . . 7  |-  ( Z  =  ( p  .\/  q )  ->  (
( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
)  <->  ( ( X 
./\  Y )  .<_  ( p  .\/  q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( p  .\/  q ) ) ) ) )
7469, 73imbi12d 311 . . . . . 6  |-  ( Z  =  ( p  .\/  q )  ->  (
( Z  =/=  X  ->  ( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) )  <->  ( (
p  .\/  q )  =/=  X  ->  ( ( X  ./\  Y )  .<_  ( p  .\/  q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( p  .\/  q ) ) ) ) ) )
7568, 74syl5ibrcom 213 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  /\  ( p  e.  A  /\  q  e.  A
)  /\  p  =/=  q )  ->  ( Z  =  ( p  .\/  q )  ->  ( Z  =/=  X  ->  (
( X  ./\  Y
)  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) ) ) )
76753exp 1150 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( p  e.  A  /\  q  e.  A )  ->  (
p  =/=  q  -> 
( Z  =  ( p  .\/  q )  ->  ( Z  =/= 
X  ->  ( ( X  ./\  Y )  .<_  Z 
<->  ( X  ./\  Y
)  =  ( X 
./\  Z ) ) ) ) ) ) )
7776imp4a 572 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( p  e.  A  /\  q  e.  A )  ->  (
( p  =/=  q  /\  Z  =  (
p  .\/  q )
)  ->  ( Z  =/=  X  ->  ( ( X  ./\  Y )  .<_  Z 
<->  ( X  ./\  Y
)  =  ( X 
./\  Z ) ) ) ) ) )
7877rexlimdvv 2686 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Z  =  ( p  .\/  q
) )  ->  ( Z  =/=  X  ->  (
( X  ./\  Y
)  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) ) ) )
7911, 13, 78mp2d 41 1  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   Latclat 14167   Atomscatm 30075   HLchlt 30162   LLinesclln 30302
This theorem is referenced by:  llnexch2N  30681  cdleme20l  31133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-psubsp 30314  df-pmap 30315  df-padd 30607
  Copyright terms: Public domain W3C validator