Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2lem Unicode version

Theorem llnexchb2lem 29983
Description: Lemma for llnexchb2 29984. (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l  |-  .<_  =  ( le `  K )
llnexch.j  |-  .\/  =  ( join `  K )
llnexch.m  |-  ./\  =  ( meet `  K )
llnexch.a  |-  A  =  ( Atoms `  K )
llnexch.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnexchb2lem  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( P  .\/  Q ) ) ) )

Proof of Theorem llnexchb2lem
StepHypRef Expression
1 simpl11 1032 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  HL )
2 simpl21 1035 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  P  e.  A )
3 simpl12 1033 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  X  e.  N )
4 eqid 2388 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
5 llnexch.n . . . . . . . 8  |-  N  =  ( LLines `  K )
64, 5llnbase 29624 . . . . . . 7  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
73, 6syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  X  e.  ( Base `  K ) )
8 hllat 29479 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
91, 8syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  Lat )
10 simpl13 1034 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  Y  e.  N )
114, 5llnbase 29624 . . . . . . . 8  |-  ( Y  e.  N  ->  Y  e.  ( Base `  K
) )
1210, 11syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  Y  e.  ( Base `  K ) )
13 llnexch.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
144, 13latmcl 14408 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  e.  ( Base `  K
) )
159, 7, 12, 14syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  e.  ( Base `  K ) )
16 llnexch.l . . . . . . . 8  |-  .<_  =  ( le `  K )
174, 16, 13latmle1 14433 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  .<_  X )
189, 7, 12, 17syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  .<_  X )
19 llnexch.j . . . . . . 7  |-  .\/  =  ( join `  K )
20 llnexch.a . . . . . . 7  |-  A  =  ( Atoms `  K )
214, 16, 19, 13, 20atmod2i2 29977 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  ( Base `  K )  /\  ( X  ./\  Y )  e.  ( Base `  K
) )  /\  ( X  ./\  Y )  .<_  X )  ->  (
( X  ./\  P
)  .\/  ( X  ./\ 
Y ) )  =  ( X  ./\  ( P  .\/  ( X  ./\  Y ) ) ) )
221, 2, 7, 15, 18, 21syl131anc 1197 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( X  ./\  P )  .\/  ( X 
./\  Y ) )  =  ( X  ./\  ( P  .\/  ( X 
./\  Y ) ) ) )
234, 20atbase 29405 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
242, 23syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  P  e.  ( Base `  K ) )
254, 13latmcom 14432 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  P  e.  ( Base `  K
) )  ->  ( X  ./\  P )  =  ( P  ./\  X
) )
269, 7, 24, 25syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  P
)  =  ( P 
./\  X ) )
27 simpl23 1037 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  -.  P  .<_  X )
28 hlatl 29476 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
291, 28syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  AtLat )
30 eqid 2388 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
314, 16, 13, 30, 20atnle 29433 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  ( Base `  K
) )  ->  ( -.  P  .<_  X  <->  ( P  ./\ 
X )  =  ( 0. `  K ) ) )
3229, 2, 7, 31syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( -.  P  .<_  X  <-> 
( P  ./\  X
)  =  ( 0.
`  K ) ) )
3327, 32mpbid 202 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( P  ./\  X
)  =  ( 0.
`  K ) )
3426, 33eqtrd 2420 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  P
)  =  ( 0.
`  K ) )
3534oveq1d 6036 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( X  ./\  P )  .\/  ( X 
./\  Y ) )  =  ( ( 0.
`  K )  .\/  ( X  ./\  Y ) ) )
36 simpr 448 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  .<_  ( P  .\/  Q ) )
37 hlcvl 29475 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  CvLat )
381, 37syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  CvLat )
39 simpl3 962 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  e.  A )
40 simpl22 1036 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  Q  e.  A )
41 breq1 4157 . . . . . . . . . . . 12  |-  ( P  =  ( X  ./\  Y )  ->  ( P  .<_  X  <->  ( X  ./\  Y )  .<_  X )
)
4218, 41syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( P  =  ( X  ./\  Y )  ->  P  .<_  X )
)
4342necon3bd 2588 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( -.  P  .<_  X  ->  P  =/=  ( X  ./\  Y ) ) )
4427, 43mpd 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  P  =/=  ( X  ./\  Y ) )
4544necomd 2634 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  =/=  P )
4616, 19, 20cvlatexchb1 29450 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  (
( X  ./\  Y
)  e.  A  /\  Q  e.  A  /\  P  e.  A )  /\  ( X  ./\  Y
)  =/=  P )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  <-> 
( P  .\/  ( X  ./\  Y ) )  =  ( P  .\/  Q ) ) )
4738, 39, 40, 2, 45, 46syl131anc 1197 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( X  ./\  Y )  .<_  ( P  .\/  Q )  <->  ( P  .\/  ( X  ./\  Y
) )  =  ( P  .\/  Q ) ) )
4836, 47mpbid 202 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( P  .\/  ( X  ./\  Y ) )  =  ( P  .\/  Q ) )
4948oveq2d 6037 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  ( P  .\/  ( X  ./\  Y ) ) )  =  ( X  ./\  ( P  .\/  Q ) ) )
5022, 35, 493eqtr3rd 2429 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  ( P  .\/  Q ) )  =  ( ( 0.
`  K )  .\/  ( X  ./\  Y ) ) )
51 hlol 29477 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OL )
521, 51syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  OL )
534, 19, 30olj02 29342 . . . . 5  |-  ( ( K  e.  OL  /\  ( X  ./\  Y )  e.  ( Base `  K
) )  ->  (
( 0. `  K
)  .\/  ( X  ./\ 
Y ) )  =  ( X  ./\  Y
) )
5452, 15, 53syl2anc 643 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( 0. `  K )  .\/  ( X  ./\  Y ) )  =  ( X  ./\  Y ) )
5550, 54eqtr2d 2421 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  =  ( X 
./\  ( P  .\/  Q ) ) )
5655ex 424 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  ->  ( X  ./\  Y )  =  ( X 
./\  ( P  .\/  Q ) ) ) )
57 simp11 987 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  K  e.  HL )
5857, 8syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  K  e.  Lat )
59 simp12 988 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  X  e.  N
)
6059, 6syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  X  e.  (
Base `  K )
)
61 simp21 990 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  P  e.  A
)
62 simp22 991 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  Q  e.  A
)
634, 19, 20hlatjcl 29482 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
6457, 61, 62, 63syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
654, 16, 13latmle2 14434 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( X  ./\  ( P  .\/  Q ) )  .<_  ( P 
.\/  Q ) )
6658, 60, 64, 65syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( X  ./\  ( P  .\/  Q ) )  .<_  ( P  .\/  Q ) )
67 breq1 4157 . . 3  |-  ( ( X  ./\  Y )  =  ( X  ./\  ( P  .\/  Q ) )  ->  ( ( X  ./\  Y )  .<_  ( P  .\/  Q )  <-> 
( X  ./\  ( P  .\/  Q ) ) 
.<_  ( P  .\/  Q
) ) )
6866, 67syl5ibrcom 214 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  =  ( X  ./\  ( P  .\/  Q ) )  ->  ( X  ./\  Y )  .<_  ( P  .\/  Q ) ) )
6956, 68impbid 184 1  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( P  .\/  Q ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   Basecbs 13397   lecple 13464   joincjn 14329   meetcmee 14330   0.cp0 14394   Latclat 14402   OLcol 29290   Atomscatm 29379   AtLatcal 29380   CvLatclc 29381   HLchlt 29466   LLinesclln 29606
This theorem is referenced by:  llnexchb2  29984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-undef 6480  df-riota 6486  df-poset 14331  df-plt 14343  df-lub 14359  df-glb 14360  df-join 14361  df-meet 14362  df-p0 14396  df-lat 14403  df-clat 14465  df-oposet 29292  df-ol 29294  df-oml 29295  df-covers 29382  df-ats 29383  df-atl 29414  df-cvlat 29438  df-hlat 29467  df-llines 29613  df-psubsp 29618  df-pmap 29619  df-padd 29911
  Copyright terms: Public domain W3C validator