Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2lem Structured version   Unicode version

Theorem llnexchb2lem 30592
Description: Lemma for llnexchb2 30593. (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l  |-  .<_  =  ( le `  K )
llnexch.j  |-  .\/  =  ( join `  K )
llnexch.m  |-  ./\  =  ( meet `  K )
llnexch.a  |-  A  =  ( Atoms `  K )
llnexch.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnexchb2lem  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( P  .\/  Q ) ) ) )

Proof of Theorem llnexchb2lem
StepHypRef Expression
1 simpl11 1032 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  HL )
2 simpl21 1035 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  P  e.  A )
3 simpl12 1033 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  X  e.  N )
4 eqid 2435 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
5 llnexch.n . . . . . . . 8  |-  N  =  ( LLines `  K )
64, 5llnbase 30233 . . . . . . 7  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
73, 6syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  X  e.  ( Base `  K ) )
8 hllat 30088 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
91, 8syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  Lat )
10 simpl13 1034 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  Y  e.  N )
114, 5llnbase 30233 . . . . . . . 8  |-  ( Y  e.  N  ->  Y  e.  ( Base `  K
) )
1210, 11syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  Y  e.  ( Base `  K ) )
13 llnexch.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
144, 13latmcl 14472 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  e.  ( Base `  K
) )
159, 7, 12, 14syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  e.  ( Base `  K ) )
16 llnexch.l . . . . . . . 8  |-  .<_  =  ( le `  K )
174, 16, 13latmle1 14497 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  .<_  X )
189, 7, 12, 17syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  .<_  X )
19 llnexch.j . . . . . . 7  |-  .\/  =  ( join `  K )
20 llnexch.a . . . . . . 7  |-  A  =  ( Atoms `  K )
214, 16, 19, 13, 20atmod2i2 30586 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  ( Base `  K )  /\  ( X  ./\  Y )  e.  ( Base `  K
) )  /\  ( X  ./\  Y )  .<_  X )  ->  (
( X  ./\  P
)  .\/  ( X  ./\ 
Y ) )  =  ( X  ./\  ( P  .\/  ( X  ./\  Y ) ) ) )
221, 2, 7, 15, 18, 21syl131anc 1197 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( X  ./\  P )  .\/  ( X 
./\  Y ) )  =  ( X  ./\  ( P  .\/  ( X 
./\  Y ) ) ) )
234, 20atbase 30014 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
242, 23syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  P  e.  ( Base `  K ) )
254, 13latmcom 14496 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  P  e.  ( Base `  K
) )  ->  ( X  ./\  P )  =  ( P  ./\  X
) )
269, 7, 24, 25syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  P
)  =  ( P 
./\  X ) )
27 simpl23 1037 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  -.  P  .<_  X )
28 hlatl 30085 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
291, 28syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  AtLat )
30 eqid 2435 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
314, 16, 13, 30, 20atnle 30042 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  ( Base `  K
) )  ->  ( -.  P  .<_  X  <->  ( P  ./\ 
X )  =  ( 0. `  K ) ) )
3229, 2, 7, 31syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( -.  P  .<_  X  <-> 
( P  ./\  X
)  =  ( 0.
`  K ) ) )
3327, 32mpbid 202 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( P  ./\  X
)  =  ( 0.
`  K ) )
3426, 33eqtrd 2467 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  P
)  =  ( 0.
`  K ) )
3534oveq1d 6088 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( X  ./\  P )  .\/  ( X 
./\  Y ) )  =  ( ( 0.
`  K )  .\/  ( X  ./\  Y ) ) )
36 simpr 448 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  .<_  ( P  .\/  Q ) )
37 hlcvl 30084 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  CvLat )
381, 37syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  CvLat )
39 simpl3 962 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  e.  A )
40 simpl22 1036 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  Q  e.  A )
41 breq1 4207 . . . . . . . . . . . 12  |-  ( P  =  ( X  ./\  Y )  ->  ( P  .<_  X  <->  ( X  ./\  Y )  .<_  X )
)
4218, 41syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( P  =  ( X  ./\  Y )  ->  P  .<_  X )
)
4342necon3bd 2635 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( -.  P  .<_  X  ->  P  =/=  ( X  ./\  Y ) ) )
4427, 43mpd 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  P  =/=  ( X  ./\  Y ) )
4544necomd 2681 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  =/=  P )
4616, 19, 20cvlatexchb1 30059 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  (
( X  ./\  Y
)  e.  A  /\  Q  e.  A  /\  P  e.  A )  /\  ( X  ./\  Y
)  =/=  P )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  <-> 
( P  .\/  ( X  ./\  Y ) )  =  ( P  .\/  Q ) ) )
4738, 39, 40, 2, 45, 46syl131anc 1197 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( X  ./\  Y )  .<_  ( P  .\/  Q )  <->  ( P  .\/  ( X  ./\  Y
) )  =  ( P  .\/  Q ) ) )
4836, 47mpbid 202 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( P  .\/  ( X  ./\  Y ) )  =  ( P  .\/  Q ) )
4948oveq2d 6089 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  ( P  .\/  ( X  ./\  Y ) ) )  =  ( X  ./\  ( P  .\/  Q ) ) )
5022, 35, 493eqtr3rd 2476 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  ( P  .\/  Q ) )  =  ( ( 0.
`  K )  .\/  ( X  ./\  Y ) ) )
51 hlol 30086 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OL )
521, 51syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  OL )
534, 19, 30olj02 29951 . . . . 5  |-  ( ( K  e.  OL  /\  ( X  ./\  Y )  e.  ( Base `  K
) )  ->  (
( 0. `  K
)  .\/  ( X  ./\ 
Y ) )  =  ( X  ./\  Y
) )
5452, 15, 53syl2anc 643 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( 0. `  K )  .\/  ( X  ./\  Y ) )  =  ( X  ./\  Y ) )
5550, 54eqtr2d 2468 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  =  ( X 
./\  ( P  .\/  Q ) ) )
5655ex 424 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  ->  ( X  ./\  Y )  =  ( X 
./\  ( P  .\/  Q ) ) ) )
57 simp11 987 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  K  e.  HL )
5857, 8syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  K  e.  Lat )
59 simp12 988 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  X  e.  N
)
6059, 6syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  X  e.  (
Base `  K )
)
61 simp21 990 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  P  e.  A
)
62 simp22 991 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  Q  e.  A
)
634, 19, 20hlatjcl 30091 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
6457, 61, 62, 63syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
654, 16, 13latmle2 14498 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( X  ./\  ( P  .\/  Q ) )  .<_  ( P 
.\/  Q ) )
6658, 60, 64, 65syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( X  ./\  ( P  .\/  Q ) )  .<_  ( P  .\/  Q ) )
67 breq1 4207 . . 3  |-  ( ( X  ./\  Y )  =  ( X  ./\  ( P  .\/  Q ) )  ->  ( ( X  ./\  Y )  .<_  ( P  .\/  Q )  <-> 
( X  ./\  ( P  .\/  Q ) ) 
.<_  ( P  .\/  Q
) ) )
6866, 67syl5ibrcom 214 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  =  ( X  ./\  ( P  .\/  Q ) )  ->  ( X  ./\  Y )  .<_  ( P  .\/  Q ) ) )
6956, 68impbid 184 1  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( P  .\/  Q ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   0.cp0 14458   Latclat 14466   OLcol 29899   Atomscatm 29988   AtLatcal 29989   CvLatclc 29990   HLchlt 30075   LLinesclln 30215
This theorem is referenced by:  llnexchb2  30593
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-clat 14529  df-oposet 29901  df-ol 29903  df-oml 29904  df-covers 29991  df-ats 29992  df-atl 30023  df-cvlat 30047  df-hlat 30076  df-llines 30222  df-psubsp 30227  df-pmap 30228  df-padd 30520
  Copyright terms: Public domain W3C validator