Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni2 Unicode version

Theorem llni2 29701
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llni2.j  |-  .\/  =  ( join `  K )
llni2.a  |-  A  =  ( Atoms `  K )
llni2.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llni2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  N
)

Proof of Theorem llni2
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 959 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  e.  A )
2 simpl3 960 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  A )
3 simpr 447 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  =/=  Q )
4 eqidd 2284 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  =  ( P  .\/  Q ) )
5 neeq1 2454 . . . . 5  |-  ( r  =  P  ->  (
r  =/=  s  <->  P  =/=  s ) )
6 oveq1 5865 . . . . . 6  |-  ( r  =  P  ->  (
r  .\/  s )  =  ( P  .\/  s ) )
76eqeq2d 2294 . . . . 5  |-  ( r  =  P  ->  (
( P  .\/  Q
)  =  ( r 
.\/  s )  <->  ( P  .\/  Q )  =  ( P  .\/  s ) ) )
85, 7anbi12d 691 . . . 4  |-  ( r  =  P  ->  (
( r  =/=  s  /\  ( P  .\/  Q
)  =  ( r 
.\/  s ) )  <-> 
( P  =/=  s  /\  ( P  .\/  Q
)  =  ( P 
.\/  s ) ) ) )
9 neeq2 2455 . . . . 5  |-  ( s  =  Q  ->  ( P  =/=  s  <->  P  =/=  Q ) )
10 oveq2 5866 . . . . . 6  |-  ( s  =  Q  ->  ( P  .\/  s )  =  ( P  .\/  Q
) )
1110eqeq2d 2294 . . . . 5  |-  ( s  =  Q  ->  (
( P  .\/  Q
)  =  ( P 
.\/  s )  <->  ( P  .\/  Q )  =  ( P  .\/  Q ) ) )
129, 11anbi12d 691 . . . 4  |-  ( s  =  Q  ->  (
( P  =/=  s  /\  ( P  .\/  Q
)  =  ( P 
.\/  s ) )  <-> 
( P  =/=  Q  /\  ( P  .\/  Q
)  =  ( P 
.\/  Q ) ) ) )
138, 12rspc2ev 2892 . . 3  |-  ( ( P  e.  A  /\  Q  e.  A  /\  ( P  =/=  Q  /\  ( P  .\/  Q
)  =  ( P 
.\/  Q ) ) )  ->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q )  =  ( r  .\/  s
) ) )
141, 2, 3, 4, 13syl112anc 1186 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q )  =  ( r  .\/  s
) ) )
15 simpl1 958 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  K  e.  HL )
16 eqid 2283 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
17 llni2.j . . . . 5  |-  .\/  =  ( join `  K )
18 llni2.a . . . . 5  |-  A  =  ( Atoms `  K )
1916, 17, 18hlatjcl 29556 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
2019adantr 451 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
21 llni2.n . . . 4  |-  N  =  ( LLines `  K )
2216, 17, 18, 21islln3 29699 . . 3  |-  ( ( K  e.  HL  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  (
( P  .\/  Q
)  e.  N  <->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q )  =  ( r  .\/  s
) ) ) )
2315, 20, 22syl2anc 642 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  Q )  e.  N  <->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q
)  =  ( r 
.\/  s ) ) ) )
2414, 23mpbird 223 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   ` cfv 5255  (class class class)co 5858   Basecbs 13148   joincjn 14078   Atomscatm 29453   HLchlt 29540   LLinesclln 29680
This theorem is referenced by:  2atneat  29704  islln2a  29706  2at0mat0  29714  ps-2c  29717  lplnnle2at  29730  2atmat  29750  lplnexllnN  29753  dalempjsen  29842  dalemcea  29849  dalem2  29850  dalemdea  29851  dalem16  29868  dalemcjden  29881  dalem23  29885  dalem54  29915  dalem60  29921  llnexchb2  30058  arglem1N  30379  cdlemc5  30384  cdleme20l1  30509  cdleme20l2  30510  cdleme20l  30511  cdleme22b  30530  cdlemeg46req  30718  cdlemh  31006
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687
  Copyright terms: Public domain W3C validator