Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnnlt Unicode version

Theorem llnnlt 30334
Description: Two lattice lines cannot satisfy the less than relation. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llnnlt.s  |-  .<  =  ( lt `  K )
llnnlt.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnnlt  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  -.  X  .<  Y )

Proof of Theorem llnnlt
StepHypRef Expression
1 llnnlt.s . . . . 5  |-  .<  =  ( lt `  K )
21pltirr 14113 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  N )  ->  -.  X  .<  X )
323adant3 975 . . 3  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  -.  X  .<  X )
4 breq2 4043 . . . 4  |-  ( X  =  Y  ->  ( X  .<  X  <->  X  .<  Y ) )
54notbid 285 . . 3  |-  ( X  =  Y  ->  ( -.  X  .<  X  <->  -.  X  .<  Y ) )
63, 5syl5ibcom 211 . 2  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( X  =  Y  ->  -.  X  .<  Y ) )
7 eqid 2296 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
87, 1pltle 14111 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( X  .<  Y  ->  X ( le `  K ) Y ) )
9 llnnlt.n . . . . 5  |-  N  =  ( LLines `  K )
107, 9llncmp 30333 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( X ( le
`  K ) Y  <-> 
X  =  Y ) )
118, 10sylibd 205 . . 3  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( X  .<  Y  ->  X  =  Y )
)
1211necon3ad 2495 . 2  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( X  =/=  Y  ->  -.  X  .<  Y ) )
136, 12pm2.61dne 2536 1  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  -.  X  .<  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271   lecple 13231   ltcplt 14091   HLchlt 30162   LLinesclln 30302
This theorem is referenced by:  lplnnle2at  30352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309
  Copyright terms: Public domain W3C validator