MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyidm Unicode version

Theorem llyidm 17214
Description: Idempotence of the "locally" predicate, i.e. being "locally  A " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyidm  |- Locally Locally  A  = Locally  A

Proof of Theorem llyidm
Dummy variables  j  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 17198 . . . 4  |-  ( j  e. Locally Locally  A  ->  j  e.  Top )
2 llyi 17200 . . . . . . 7  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. u  e.  j  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A )
)
3 simprr3 1005 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
jt  u )  e. Locally  A )
4 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  e.  j )
5 ssid 3197 . . . . . . . . . . . . 13  |-  u  C_  u
65a1i 10 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  C_  u )
713ad2ant1 976 . . . . . . . . . . . . . 14  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  j  e.  Top )
87adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  j  e.  Top )
9 restopn2 16908 . . . . . . . . . . . . 13  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
108, 4, 9syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
114, 6, 10mpbir2and 888 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  e.  ( jt  u ) )
12 simprr2 1004 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  y  e.  u )
13 llyi 17200 . . . . . . . . . . 11  |-  ( ( ( jt  u )  e. Locally  A  /\  u  e.  ( jt  u
)  /\  y  e.  u )  ->  E. v  e.  ( jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A ) )
143, 11, 12, 13syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  E. v  e.  ( jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A ) )
15 restopn2 16908 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( v  e.  ( jt  u )  <->  ( v  e.  j  /\  v  C_  u ) ) )
168, 4, 15syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
v  e.  ( jt  u )  <->  ( v  e.  j  /\  v  C_  u ) ) )
17 simpl 443 . . . . . . . . . . . . 13  |-  ( ( v  e.  j  /\  v  C_  u )  -> 
v  e.  j )
1816, 17syl6bi 219 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
v  e.  ( jt  u )  ->  v  e.  j ) )
19 simprl 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  j )
20 simprr1 1003 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  u )
21 simprr1 1003 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  C_  x )
2221adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  C_  x )
2320, 22sstrd 3189 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  x )
24 vex 2791 . . . . . . . . . . . . . . . . 17  |-  v  e. 
_V
2524elpw 3631 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ~P x  <->  v  C_  x )
2623, 25sylibr 203 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ~P x )
27 elin 3358 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( j  i^i 
~P x )  <->  ( v  e.  j  /\  v  e.  ~P x ) )
2819, 26, 27sylanbrc 645 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ( j  i^i  ~P x ) )
29 simprr2 1004 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  y  e.  v )
308adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  j  e.  Top )
31 simplrl 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  e.  j )
32 restabs 16896 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  Top  /\  v  C_  u  /\  u  e.  j )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
3330, 20, 31, 32syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
34 simprr3 1005 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
( jt  u )t  v )  e.  A )
3533, 34eqeltrrd 2358 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
jt  v )  e.  A
)
3628, 29, 35jca32 521 . . . . . . . . . . . . 13  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
v  e.  ( j  i^i  ~P x )  /\  ( y  e.  v  /\  ( jt  v )  e.  A ) ) )
3736ex 423 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
( v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A
) )  ->  (
v  e.  ( j  i^i  ~P x )  /\  ( y  e.  v  /\  ( jt  v )  e.  A ) ) ) )
3818, 37syland 467 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
( v  e.  ( jt  u )  /\  (
v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) )  ->  ( v  e.  ( j  i^i  ~P x )  /\  (
y  e.  v  /\  ( jt  v )  e.  A ) ) ) )
3938reximdv2 2652 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  ( E. v  e.  (
jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) ) )
4014, 39mpd 14 . . . . . . . . 9  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
4140expr 598 . . . . . . . 8  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  u  e.  j
)  ->  ( (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A )  ->  E. v  e.  ( j  i^i  ~P x
) ( y  e.  v  /\  ( jt  v )  e.  A ) ) )
4241rexlimdva 2667 . . . . . . 7  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  ( E. u  e.  j 
( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A )  ->  E. v  e.  ( j  i^i  ~P x
) ( y  e.  v  /\  ( jt  v )  e.  A ) ) )
432, 42mpd 14 . . . . . 6  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
44433expb 1152 . . . . 5  |-  ( ( j  e. Locally Locally  A  /\  (
x  e.  j  /\  y  e.  x )
)  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
4544ralrimivva 2635 . . . 4  |-  ( j  e. Locally Locally  A  ->  A. x  e.  j  A. y  e.  x  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
46 islly 17194 . . . 4  |-  ( j  e. Locally  A  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) ) )
471, 45, 46sylanbrc 645 . . 3  |-  ( j  e. Locally Locally  A  ->  j  e. Locally  A )
4847ssriv 3184 . 2  |- Locally Locally  A  C_ Locally  A
49 llyrest 17211 . . . . 5  |-  ( ( j  e. Locally  A  /\  x  e.  j )  ->  ( jt  x )  e. Locally  A )
5049adantl 452 . . . 4  |-  ( (  T.  /\  ( j  e. Locally  A  /\  x  e.  j ) )  -> 
( jt  x )  e. Locally  A )
51 llytop 17198 . . . . . 6  |-  ( j  e. Locally  A  ->  j  e. 
Top )
5251ssriv 3184 . . . . 5  |- Locally  A  C_  Top
5352a1i 10 . . . 4  |-  (  T. 
-> Locally  A  C_  Top )
5450, 53restlly 17209 . . 3  |-  (  T. 
-> Locally  A  C_ Locally Locally  A )
5554trud 1314 . 2  |- Locally  A  C_ Locally Locally  A
5648, 55eqssi 3195 1  |- Locally Locally  A  = Locally  A
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    T. wtru 1307    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   ~Pcpw 3625  (class class class)co 5858   ↾t crest 13325   Topctop 16631  Locally clly 17190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-oadd 6483  df-er 6660  df-en 6864  df-fin 6867  df-fi 7165  df-rest 13327  df-topgen 13344  df-top 16636  df-bases 16638  df-topon 16639  df-lly 17192
  Copyright terms: Public domain W3C validator