MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyidm Unicode version

Theorem llyidm 17230
Description: Idempotence of the "locally" predicate, i.e. being "locally  A " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyidm  |- Locally Locally  A  = Locally  A

Proof of Theorem llyidm
Dummy variables  j  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 17214 . . . 4  |-  ( j  e. Locally Locally  A  ->  j  e.  Top )
2 llyi 17216 . . . . . . 7  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. u  e.  j  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A )
)
3 simprr3 1005 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
jt  u )  e. Locally  A )
4 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  e.  j )
5 ssid 3210 . . . . . . . . . . . . 13  |-  u  C_  u
65a1i 10 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  C_  u )
713ad2ant1 976 . . . . . . . . . . . . . 14  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  j  e.  Top )
87adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  j  e.  Top )
9 restopn2 16924 . . . . . . . . . . . . 13  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
108, 4, 9syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
114, 6, 10mpbir2and 888 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  e.  ( jt  u ) )
12 simprr2 1004 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  y  e.  u )
13 llyi 17216 . . . . . . . . . . 11  |-  ( ( ( jt  u )  e. Locally  A  /\  u  e.  ( jt  u
)  /\  y  e.  u )  ->  E. v  e.  ( jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A ) )
143, 11, 12, 13syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  E. v  e.  ( jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A ) )
15 restopn2 16924 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( v  e.  ( jt  u )  <->  ( v  e.  j  /\  v  C_  u ) ) )
168, 4, 15syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
v  e.  ( jt  u )  <->  ( v  e.  j  /\  v  C_  u ) ) )
17 simpl 443 . . . . . . . . . . . . 13  |-  ( ( v  e.  j  /\  v  C_  u )  -> 
v  e.  j )
1816, 17syl6bi 219 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
v  e.  ( jt  u )  ->  v  e.  j ) )
19 simprl 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  j )
20 simprr1 1003 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  u )
21 simprr1 1003 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  C_  x )
2221adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  C_  x )
2320, 22sstrd 3202 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  x )
24 vex 2804 . . . . . . . . . . . . . . . . 17  |-  v  e. 
_V
2524elpw 3644 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ~P x  <->  v  C_  x )
2623, 25sylibr 203 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ~P x )
27 elin 3371 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( j  i^i 
~P x )  <->  ( v  e.  j  /\  v  e.  ~P x ) )
2819, 26, 27sylanbrc 645 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ( j  i^i  ~P x ) )
29 simprr2 1004 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  y  e.  v )
308adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  j  e.  Top )
31 simplrl 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  e.  j )
32 restabs 16912 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  Top  /\  v  C_  u  /\  u  e.  j )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
3330, 20, 31, 32syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
34 simprr3 1005 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
( jt  u )t  v )  e.  A )
3533, 34eqeltrrd 2371 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
jt  v )  e.  A
)
3628, 29, 35jca32 521 . . . . . . . . . . . . 13  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
v  e.  ( j  i^i  ~P x )  /\  ( y  e.  v  /\  ( jt  v )  e.  A ) ) )
3736ex 423 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
( v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A
) )  ->  (
v  e.  ( j  i^i  ~P x )  /\  ( y  e.  v  /\  ( jt  v )  e.  A ) ) ) )
3818, 37syland 467 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
( v  e.  ( jt  u )  /\  (
v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) )  ->  ( v  e.  ( j  i^i  ~P x )  /\  (
y  e.  v  /\  ( jt  v )  e.  A ) ) ) )
3938reximdv2 2665 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  ( E. v  e.  (
jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) ) )
4014, 39mpd 14 . . . . . . . . 9  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
4140expr 598 . . . . . . . 8  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  u  e.  j
)  ->  ( (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A )  ->  E. v  e.  ( j  i^i  ~P x
) ( y  e.  v  /\  ( jt  v )  e.  A ) ) )
4241rexlimdva 2680 . . . . . . 7  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  ( E. u  e.  j 
( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A )  ->  E. v  e.  ( j  i^i  ~P x
) ( y  e.  v  /\  ( jt  v )  e.  A ) ) )
432, 42mpd 14 . . . . . 6  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
44433expb 1152 . . . . 5  |-  ( ( j  e. Locally Locally  A  /\  (
x  e.  j  /\  y  e.  x )
)  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
4544ralrimivva 2648 . . . 4  |-  ( j  e. Locally Locally  A  ->  A. x  e.  j  A. y  e.  x  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
46 islly 17210 . . . 4  |-  ( j  e. Locally  A  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) ) )
471, 45, 46sylanbrc 645 . . 3  |-  ( j  e. Locally Locally  A  ->  j  e. Locally  A )
4847ssriv 3197 . 2  |- Locally Locally  A  C_ Locally  A
49 llyrest 17227 . . . . 5  |-  ( ( j  e. Locally  A  /\  x  e.  j )  ->  ( jt  x )  e. Locally  A )
5049adantl 452 . . . 4  |-  ( (  T.  /\  ( j  e. Locally  A  /\  x  e.  j ) )  -> 
( jt  x )  e. Locally  A )
51 llytop 17214 . . . . . 6  |-  ( j  e. Locally  A  ->  j  e. 
Top )
5251ssriv 3197 . . . . 5  |- Locally  A  C_  Top
5352a1i 10 . . . 4  |-  (  T. 
-> Locally  A  C_  Top )
5450, 53restlly 17225 . . 3  |-  (  T. 
-> Locally  A  C_ Locally Locally  A )
5554trud 1314 . 2  |- Locally  A  C_ Locally Locally  A
5648, 55eqssi 3208 1  |- Locally Locally  A  = Locally  A
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    T. wtru 1307    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    i^i cin 3164    C_ wss 3165   ~Pcpw 3638  (class class class)co 5874   ↾t crest 13341   Topctop 16647  Locally clly 17206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-oadd 6499  df-er 6676  df-en 6880  df-fin 6883  df-fi 7181  df-rest 13343  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655  df-lly 17208
  Copyright terms: Public domain W3C validator