Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  llytop Structured version   Unicode version

Theorem llytop 17535
 Description: A locally space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llytop Locally

Proof of Theorem llytop
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islly 17531 . 2 Locally t
21simplbi 447 1 Locally
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wcel 1725  wral 2705  wrex 2706   cin 3319  cpw 3799  (class class class)co 6081   ↾t crest 13648  ctop 16958  Locally clly 17527 This theorem is referenced by:  llynlly  17540  islly2  17547  llyrest  17548  llyidm  17551  nllyidm  17552  toplly  17553  lly1stc  17559  txlly  17668 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084  df-lly 17529
 Copyright terms: Public domain W3C validator