MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbrf Unicode version

Theorem lmbrf 17006
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary set of upper integers. This version of lmbr2 17005 presupposes that  F is a function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmbr2.4  |-  Z  =  ( ZZ>= `  M )
lmbr2.5  |-  ( ph  ->  M  e.  ZZ )
lmbrf.6  |-  ( ph  ->  F : Z --> X )
lmbrf.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
Assertion
Ref Expression
lmbrf  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
Distinct variable groups:    j, k, u, F    j, J, k, u    ph, j, k, u   
j, Z, k, u   
j, M    P, j,
k, u    j, X, k, u
Allowed substitution hints:    A( u, j, k)    M( u, k)

Proof of Theorem lmbrf
StepHypRef Expression
1 lmbr.2 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 lmbr2.4 . . 3  |-  Z  =  ( ZZ>= `  M )
3 lmbr2.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
41, 2, 3lmbr2 17005 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
5 3anass 938 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) )
62uztrn2 10261 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
7 lmbrf.7 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
87eleq1d 2362 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  A  e.  u ) )
9 lmbrf.6 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : Z --> X )
10 fdm 5409 . . . . . . . . . . . . . . . 16  |-  ( F : Z --> X  ->  dom  F  =  Z )
119, 10syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  F  =  Z )
1211eleq2d 2363 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  dom  F  <-> 
k  e.  Z ) )
1312biimpar 471 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  dom  F )
1413biantrurd 494 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
158, 14bitr3d 246 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
166, 15sylan2 460 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( A  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
1716anassrs 629 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A  e.  u  <->  ( k  e. 
dom  F  /\  ( F `  k )  e.  u ) ) )
1817ralbidva 2572 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A  e.  u  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
1918rexbidva 2573 . . . . . . 7  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
2019imbi2d 307 . . . . . 6  |-  ( ph  ->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )  <->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2120ralbidv 2576 . . . . 5  |-  ( ph  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2221anbi2d 684 . . . 4  |-  ( ph  ->  ( ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
)  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) )
23 toponmax 16682 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
241, 23syl 15 . . . . . . 7  |-  ( ph  ->  X  e.  J )
25 cnex 8834 . . . . . . 7  |-  CC  e.  _V
2624, 25jctir 524 . . . . . 6  |-  ( ph  ->  ( X  e.  J  /\  CC  e.  _V )
)
27 uzssz 10263 . . . . . . . . 9  |-  ( ZZ>= `  M )  C_  ZZ
28 zsscn 10048 . . . . . . . . 9  |-  ZZ  C_  CC
2927, 28sstri 3201 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  CC
302, 29eqsstri 3221 . . . . . . 7  |-  Z  C_  CC
319, 30jctir 524 . . . . . 6  |-  ( ph  ->  ( F : Z --> X  /\  Z  C_  CC ) )
32 elpm2r 6804 . . . . . 6  |-  ( ( ( X  e.  J  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC ) )
3326, 31, 32syl2anc 642 . . . . 5  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
3433biantrurd 494 . . . 4  |-  ( ph  ->  ( ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) ) )
3522, 34bitr2d 245 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )  <-> 
( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A  e.  u ) ) ) )
365, 35syl5bb 248 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
374, 36bitrd 244 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   class class class wbr 4039   dom cdm 4705   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751   ZZcz 10040   ZZ>=cuz 10246  TopOnctopon 16648   ~~> tclm 16972
This theorem is referenced by:  lmconst  17007  lmss  17042  1stcelcls  17203  txlm  17358  lmflf  17716  lmxrge0  23390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-neg 9056  df-z 10041  df-uz 10247  df-top 16652  df-topon 16655  df-lm 16975
  Copyright terms: Public domain W3C validator