MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmclim Unicode version

Theorem lmclim 18730
Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmclim.2  |-  J  =  ( TopOpen ` fld )
lmclim.3  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
lmclim  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( CC  ^pm  CC )  /\  F  ~~>  P ) ) )

Proof of Theorem lmclim
Dummy variables  j 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anass 938 . . 3  |-  ( ( F  e.  ( CC 
^pm  CC )  /\  P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
)  <->  ( F  e.  ( CC  ^pm  CC )  /\  ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
) ) )
2 lmclim.3 . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
32uztrn2 10247 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
4 3anass 938 . . . . . . . . . . 11  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( k  e.  dom  F  /\  ( ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
) )
5 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  ->  Z  C_  dom  F )
65sselda 3182 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  k  e.  Z )  ->  k  e.  dom  F )
76biantrurd 494 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( k  e.  dom  F  /\  ( ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
) ) )
8 eqid 2285 . . . . . . . . . . . . . . . . 17  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
98cnmetdval 18282 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  k
)  e.  CC  /\  P  e.  CC )  ->  ( ( F `  k ) ( abs 
o.  -  ) P
)  =  ( abs `  ( ( F `  k )  -  P
) ) )
109ancoms 439 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  CC  /\  ( F `  k )  e.  CC )  -> 
( ( F `  k ) ( abs 
o.  -  ) P
)  =  ( abs `  ( ( F `  k )  -  P
) ) )
1110breq1d 4035 . . . . . . . . . . . . . 14  |-  ( ( P  e.  CC  /\  ( F `  k )  e.  CC )  -> 
( ( ( F `
 k ) ( abs  o.  -  ) P )  <  x  <->  ( abs `  ( ( F `  k )  -  P ) )  <  x ) )
1211pm5.32da 622 . . . . . . . . . . . . 13  |-  ( P  e.  CC  ->  (
( ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  P ) )  <  x ) ) )
1312ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  P ) )  <  x ) ) )
147, 13bitr3d 246 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  k  e.  Z )  ->  (
( k  e.  dom  F  /\  ( ( F `
 k )  e.  CC  /\  ( ( F `  k ) ( abs  o.  -  ) P )  <  x
) )  <->  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  P
) )  <  x
) ) )
154, 14syl5bb 248 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  k  e.  Z )  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  P ) )  <  x ) ) )
163, 15sylan2 460 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  (
( F `  k
) ( abs  o.  -  ) P )  <  x )  <->  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  P
) )  <  x
) ) )
1716anassrs 629 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  Z  C_ 
dom  F )  /\  P  e.  CC )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  P ) )  <  x ) ) )
1817ralbidva 2561 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  P ) )  < 
x ) ) )
1918rexbidva 2562 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  P ) )  < 
x ) ) )
2019ralbidv 2565 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  P ) )  <  x ) ) )
2120pm5.32da 622 . . . 4  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
)  <->  ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  P ) )  <  x ) ) ) )
2221anbi2d 684 . . 3  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( ( F  e.  ( CC  ^pm  CC )  /\  ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
) )  <->  ( F  e.  ( CC  ^pm  CC )  /\  ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  P ) )  <  x ) ) ) ) )
231, 22syl5bb 248 . 2  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( ( F  e.  ( CC  ^pm  CC )  /\  P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
)  <->  ( F  e.  ( CC  ^pm  CC )  /\  ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  P ) )  <  x ) ) ) ) )
24 lmclim.2 . . . 4  |-  J  =  ( TopOpen ` fld )
2524cnfldtopn 18293 . . 3  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
26 cnxmet 18284 . . . 4  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
2726a1i 10 . . 3  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( abs  o.  -  )  e.  ( * Met `  CC ) )
28 simpl 443 . . 3  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  M  e.  ZZ )
2925, 27, 2, 28lmmbr3 18688 . 2  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( CC  ^pm  CC )  /\  P  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  (
( F `  k
) ( abs  o.  -  ) P )  <  x ) ) ) )
30 simpll 730 . . . 4  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  F  e.  ( CC  ^pm  CC )
)  ->  M  e.  ZZ )
31 simpr 447 . . . 4  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  F  e.  ( CC  ^pm  CC )
)  ->  F  e.  ( CC  ^pm  CC ) )
32 eqidd 2286 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  F  e.  ( CC  ^pm  CC ) )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
332, 30, 31, 32clim2 11980 . . 3  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  F  e.  ( CC  ^pm  CC )
)  ->  ( F  ~~>  P 
<->  ( P  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  P ) )  < 
x ) ) ) )
3433pm5.32da 622 . 2  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( ( F  e.  ( CC  ^pm  CC )  /\  F  ~~>  P )  <-> 
( F  e.  ( CC  ^pm  CC )  /\  ( P  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  P ) )  < 
x ) ) ) ) )
3523, 29, 343bitr4d 276 1  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( CC  ^pm  CC )  /\  F  ~~>  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   A.wral 2545   E.wrex 2546    C_ wss 3154   class class class wbr 4025   dom cdm 4691    o. ccom 4695   ` cfv 5257  (class class class)co 5860    ^pm cpm 6775   CCcc 8737    < clt 8869    - cmin 9039   ZZcz 10026   ZZ>=cuz 10232   RR+crp 10356   abscabs 11721    ~~> cli 11960   TopOpenctopn 13328   * Metcxmt 16371  ℂfldccnfld 16379   ~~> tclm 16958
This theorem is referenced by:  lmclimf  18731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-fz 10785  df-seq 11049  df-exp 11107  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-plusg 13223  df-mulr 13224  df-starv 13225  df-tset 13229  df-ple 13230  df-ds 13232  df-rest 13329  df-topn 13330  df-topgen 13346  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-lm 16961
  Copyright terms: Public domain W3C validator