Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmclim2 Structured version   Unicode version

Theorem lmclim2 26464
Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
lmclim2.3  |-  ( ph  ->  F : NN --> X )
lmclim2.4  |-  J  =  ( MetOpen `  D )
lmclim2.5  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) D Y ) )
lmclim2.6  |-  ( ph  ->  Y  e.  X )
Assertion
Ref Expression
lmclim2  |-  ( ph  ->  ( F ( ~~> t `  J ) Y  <->  G  ~~>  0 ) )
Distinct variable groups:    x, D    x, F    x, G    x, J    x, X    ph, x    x, Y

Proof of Theorem lmclim2
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmclim2.4 . . 3  |-  J  =  ( MetOpen `  D )
2 lmclim2.2 . . . 4  |-  ( ph  ->  D  e.  ( Met `  X ) )
3 metxmet 18364 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
42, 3syl 16 . . 3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
5 nnuz 10521 . . 3  |-  NN  =  ( ZZ>= `  1 )
6 1z 10311 . . . 4  |-  1  e.  ZZ
76a1i 11 . . 3  |-  ( ph  ->  1  e.  ZZ )
8 eqidd 2437 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
9 lmclim2.3 . . 3  |-  ( ph  ->  F : NN --> X )
101, 4, 5, 7, 8, 9lmmbrf 19215 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) Y  <->  ( Y  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) ) )
11 lmclim2.5 . . . . . 6  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) D Y ) )
12 nnex 10006 . . . . . . 7  |-  NN  e.  _V
1312mptex 5966 . . . . . 6  |-  ( x  e.  NN  |->  ( ( F `  x ) D Y ) )  e.  _V
1411, 13eqeltri 2506 . . . . 5  |-  G  e. 
_V
1514a1i 11 . . . 4  |-  ( ph  ->  G  e.  _V )
16 fveq2 5728 . . . . . . 7  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
1716oveq1d 6096 . . . . . 6  |-  ( x  =  k  ->  (
( F `  x
) D Y )  =  ( ( F `
 k ) D Y ) )
18 ovex 6106 . . . . . 6  |-  ( ( F `  k ) D Y )  e. 
_V
1917, 11, 18fvmpt 5806 . . . . 5  |-  ( k  e.  NN  ->  ( G `  k )  =  ( ( F `
 k ) D Y ) )
2019adantl 453 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( ( F `  k ) D Y ) )
212adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  D  e.  ( Met `  X
) )
229ffvelrnda 5870 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  X )
23 lmclim2.6 . . . . . . 7  |-  ( ph  ->  Y  e.  X )
2423adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  Y  e.  X )
25 metcl 18362 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  Y  e.  X )  ->  (
( F `  k
) D Y )  e.  RR )
2621, 22, 24, 25syl3anc 1184 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D Y )  e.  RR )
2726recnd 9114 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D Y )  e.  CC )
285, 7, 15, 20, 27clim0c 12301 . . 3  |-  ( ph  ->  ( G  ~~>  0  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
) D Y ) )  <  x ) )
295uztrn2 10503 . . . . . . . 8  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
30 metge0 18375 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  Y  e.  X )  ->  0  <_  ( ( F `  k ) D Y ) )
3121, 22, 24, 30syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( F `  k ) D Y ) )
3226, 31absidd 12225 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( F `  k ) D Y ) )  =  ( ( F `  k
) D Y ) )
3332breq1d 4222 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( ( F `  k ) D Y ) )  <  x  <->  ( ( F `  k ) D Y )  <  x
) )
3429, 33sylan2 461 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  (
( F `  k
) D Y ) )  <  x  <->  ( ( F `  k ) D Y )  <  x
) )
3534anassrs 630 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( F `
 k ) D Y ) )  < 
x  <->  ( ( F `
 k ) D Y )  <  x
) )
3635ralbidva 2721 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k ) D Y ) )  <  x  <->  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) D Y )  < 
x ) )
3736rexbidva 2722 . . . 4  |-  ( ph  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
) D Y ) )  <  x  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) )
3837ralbidv 2725 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k ) D Y ) )  <  x  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) )
3923biantrurd 495 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) D Y )  < 
x  <->  ( Y  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x ) ) )
4028, 38, 393bitrrd 272 . 2  |-  ( ph  ->  ( ( Y  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D Y )  <  x )  <-> 
G  ~~>  0 ) )
4110, 40bitrd 245 1  |-  ( ph  ->  ( F ( ~~> t `  J ) Y  <->  G  ~~>  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   _Vcvv 2956   class class class wbr 4212    e. cmpt 4266   -->wf 5450   ` cfv 5454  (class class class)co 6081   RRcr 8989   0cc0 8990   1c1 8991    < clt 9120    <_ cle 9121   NNcn 10000   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   abscabs 12039    ~~> cli 12278   * Metcxmt 16686   Metcme 16687   MetOpencmopn 16691   ~~> tclm 17290
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-lm 17293
  Copyright terms: Public domain W3C validator