MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcnp Unicode version

Theorem lmcnp 17048
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
Hypotheses
Ref Expression
lmcnp.3  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcnp.4  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 P ) )
Assertion
Ref Expression
lmcnp  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )

Proof of Theorem lmcnp
Dummy variables  j 
k  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcnp.4 . . . . . 6  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 P ) )
2 eqid 2296 . . . . . . 7  |-  U. J  =  U. J
3 eqid 2296 . . . . . . 7  |-  U. K  =  U. K
42, 3cnpf 16993 . . . . . 6  |-  ( G  e.  ( ( J  CnP  K ) `  P )  ->  G : U. J --> U. K
)
51, 4syl 15 . . . . 5  |-  ( ph  ->  G : U. J --> U. K )
6 lmcnp.3 . . . . . . . . 9  |-  ( ph  ->  F ( ~~> t `  J ) P )
7 cnptop1 16988 . . . . . . . . . . . 12  |-  ( G  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
81, 7syl 15 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  Top )
92toptopon 16687 . . . . . . . . . . 11  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
108, 9sylib 188 . . . . . . . . . 10  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
11 nnuz 10279 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
12 1z 10069 . . . . . . . . . . 11  |-  1  e.  ZZ
1312a1i 10 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ZZ )
1410, 11, 13lmbr2 17005 . . . . . . . . 9  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e. 
U. J  /\  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) ) ) )
156, 14mpbid 201 . . . . . . . 8  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e.  U. J  /\  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) ) )
1615simp1d 967 . . . . . . 7  |-  ( ph  ->  F  e.  ( U. J  ^pm  CC ) )
17 uniexg 4533 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. J  e.  _V )
188, 17syl 15 . . . . . . . 8  |-  ( ph  ->  U. J  e.  _V )
19 cnex 8834 . . . . . . . 8  |-  CC  e.  _V
20 elpm2g 6803 . . . . . . . 8  |-  ( ( U. J  e.  _V  /\  CC  e.  _V )  ->  ( F  e.  ( U. J  ^pm  CC ) 
<->  ( F : dom  F --> U. J  /\  dom  F 
C_  CC ) ) )
2118, 19, 20sylancl 643 . . . . . . 7  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC ) 
<->  ( F : dom  F --> U. J  /\  dom  F 
C_  CC ) ) )
2216, 21mpbid 201 . . . . . 6  |-  ( ph  ->  ( F : dom  F --> U. J  /\  dom  F 
C_  CC ) )
2322simpld 445 . . . . 5  |-  ( ph  ->  F : dom  F --> U. J )
24 fco 5414 . . . . 5  |-  ( ( G : U. J --> U. K  /\  F : dom  F --> U. J )  -> 
( G  o.  F
) : dom  F --> U. K )
255, 23, 24syl2anc 642 . . . 4  |-  ( ph  ->  ( G  o.  F
) : dom  F --> U. K )
26 fdm 5409 . . . . . 6  |-  ( ( G  o.  F ) : dom  F --> U. K  ->  dom  ( G  o.  F )  =  dom  F )
2725, 26syl 15 . . . . 5  |-  ( ph  ->  dom  ( G  o.  F )  =  dom  F )
2827feq2d 5396 . . . 4  |-  ( ph  ->  ( ( G  o.  F ) : dom  ( G  o.  F
) --> U. K  <->  ( G  o.  F ) : dom  F --> U. K ) )
2925, 28mpbird 223 . . 3  |-  ( ph  ->  ( G  o.  F
) : dom  ( G  o.  F ) --> U. K )
3022simprd 449 . . . 4  |-  ( ph  ->  dom  F  C_  CC )
3127, 30eqsstrd 3225 . . 3  |-  ( ph  ->  dom  ( G  o.  F )  C_  CC )
32 cnptop2 16989 . . . . . 6  |-  ( G  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
331, 32syl 15 . . . . 5  |-  ( ph  ->  K  e.  Top )
34 uniexg 4533 . . . . 5  |-  ( K  e.  Top  ->  U. K  e.  _V )
3533, 34syl 15 . . . 4  |-  ( ph  ->  U. K  e.  _V )
36 elpm2g 6803 . . . 4  |-  ( ( U. K  e.  _V  /\  CC  e.  _V )  ->  ( ( G  o.  F )  e.  ( U. K  ^pm  CC ) 
<->  ( ( G  o.  F ) : dom  ( G  o.  F
) --> U. K  /\  dom  ( G  o.  F
)  C_  CC )
) )
3735, 19, 36sylancl 643 . . 3  |-  ( ph  ->  ( ( G  o.  F )  e.  ( U. K  ^pm  CC ) 
<->  ( ( G  o.  F ) : dom  ( G  o.  F
) --> U. K  /\  dom  ( G  o.  F
)  C_  CC )
) )
3829, 31, 37mpbir2and 888 . 2  |-  ( ph  ->  ( G  o.  F
)  e.  ( U. K  ^pm  CC ) )
3915simp2d 968 . . 3  |-  ( ph  ->  P  e.  U. J
)
40 ffvelrn 5679 . . 3  |-  ( ( G : U. J --> U. K  /\  P  e. 
U. J )  -> 
( G `  P
)  e.  U. K
)
415, 39, 40syl2anc 642 . 2  |-  ( ph  ->  ( G `  P
)  e.  U. K
)
4215simp3d 969 . . . . . 6  |-  ( ph  ->  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) )
4342adantr 451 . . . . 5  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) )
44 cnpimaex 17002 . . . . . . 7  |-  ( ( G  e.  ( ( J  CnP  K ) `
 P )  /\  u  e.  K  /\  ( G `  P )  e.  u )  ->  E. v  e.  J  ( P  e.  v  /\  ( G " v
)  C_  u )
)
45443expb 1152 . . . . . 6  |-  ( ( G  e.  ( ( J  CnP  K ) `
 P )  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( G " v )  C_  u ) )
461, 45sylan 457 . . . . 5  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( G " v
)  C_  u )
)
47 r19.29 2696 . . . . . . 7  |-  ( ( A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  E. v  e.  J  ( P  e.  v  /\  ( G
" v )  C_  u ) )  ->  E. v  e.  J  ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  ( P  e.  v  /\  ( G " v ) 
C_  u ) ) )
48 pm3.45 807 . . . . . . . . 9  |-  ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  ->  ( ( P  e.  v  /\  ( G " v )  C_  u )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u ) ) )
4948imp 418 . . . . . . . 8  |-  ( ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  ( P  e.  v  /\  ( G
" v )  C_  u ) )  -> 
( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G
" v )  C_  u ) )
5049reximi 2663 . . . . . . 7  |-  ( E. v  e.  J  ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  ( P  e.  v  /\  ( G
" v )  C_  u ) )  ->  E. v  e.  J  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u ) )
5147, 50syl 15 . . . . . 6  |-  ( ( A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  E. v  e.  J  ( P  e.  v  /\  ( G
" v )  C_  u ) )  ->  E. v  e.  J  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u ) )
525ad3antrrr 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  G : U. J
--> U. K )
53 ffn 5405 . . . . . . . . . . . . . . . . . 18  |-  ( G : U. J --> U. K  ->  G  Fn  U. J
)
5452, 53syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  G  Fn  U. J )
55 simplrl 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  v  e.  J
)
56 elssuni 3871 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  J  ->  v  C_ 
U. J )
5755, 56syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  v  C_  U. J
)
58 fnfvima 5772 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  Fn  U. J  /\  v  C_  U. J  /\  ( F `  k
)  e.  v )  ->  ( G `  ( F `  k ) )  e.  ( G
" v ) )
59583expia 1153 . . . . . . . . . . . . . . . . 17  |-  ( ( G  Fn  U. J  /\  v  C_  U. J
)  ->  ( ( F `  k )  e.  v  ->  ( G `
 ( F `  k ) )  e.  ( G " v
) ) )
6054, 57, 59syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( G `  ( F `  k
) )  e.  ( G " v ) ) )
6123ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  ->  F : dom  F --> U. J
)
62 fvco3 5612 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : dom  F --> U. J  /\  k  e.  dom  F )  -> 
( ( G  o.  F ) `  k
)  =  ( G `
 ( F `  k ) ) )
6361, 62sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( G  o.  F ) `  k )  =  ( G `  ( F `
 k ) ) )
6463eleq1d 2362 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( ( G  o.  F ) `
 k )  e.  ( G " v
)  <->  ( G `  ( F `  k ) )  e.  ( G
" v ) ) )
6560, 64sylibrd 225 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( ( G  o.  F ) `  k )  e.  ( G " v ) ) )
66 simplrr 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( G "
v )  C_  u
)
6766sseld 3192 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( ( G  o.  F ) `
 k )  e.  ( G " v
)  ->  ( ( G  o.  F ) `  k )  e.  u
) )
6865, 67syld 40 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( ( G  o.  F ) `  k )  e.  u
) )
69 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  k  e.  dom  F )
7027ad3antrrr 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  dom  ( G  o.  F )  =  dom  F )
7169, 70eleqtrrd 2373 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  k  e.  dom  ( G  o.  F
) )
7268, 71jctild 527 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( k  e.  dom  ( G  o.  F )  /\  (
( G  o.  F
) `  k )  e.  u ) ) )
7372expimpd 586 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  -> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  v )  ->  (
k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
7473ralimdv 2635 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  -> 
( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) )
7574reximdv 2667 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  -> 
( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) )
7675expr 598 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( G " v )  C_  u  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) ) )
7776com23 72 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  ( ( G " v )  C_  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) ) )
7877imp3a 420 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
7978rexlimdva 2680 . . . . . 6  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  -> 
( E. v  e.  J  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G
" v )  C_  u )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) )
8051, 79syl5 28 . . . . 5  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  -> 
( ( A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  E. v  e.  J  ( P  e.  v  /\  ( G " v ) 
C_  u ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
8143, 46, 80mp2and 660 . . . 4  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) )
8281expr 598 . . 3  |-  ( (
ph  /\  u  e.  K )  ->  (
( G `  P
)  e.  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
8382ralrimiva 2639 . 2  |-  ( ph  ->  A. u  e.  K  ( ( G `  P )  e.  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
843toptopon 16687 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
8533, 84sylib 188 . . 3  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
8685, 11, 13lmbr2 17005 . 2  |-  ( ph  ->  ( ( G  o.  F ) ( ~~> t `  K ) ( G `
 P )  <->  ( ( G  o.  F )  e.  ( U. K  ^pm  CC )  /\  ( G `
 P )  e. 
U. K  /\  A. u  e.  K  (
( G `  P
)  e.  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) ) ) )
8738, 41, 83, 86mpbir3and 1135 1  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   U.cuni 3843   class class class wbr 4039   dom cdm 4705   "cima 4708    o. ccom 4709    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751   1c1 8754   NNcn 9762   ZZcz 10040   ZZ>=cuz 10246   Topctop 16647  TopOnctopon 16648    CnP ccnp 16971   ~~> tclm 16972
This theorem is referenced by:  lmcn  17049  1stccnp  17204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-z 10041  df-uz 10247  df-top 16652  df-topon 16655  df-cnp 16974  df-lm 16975
  Copyright terms: Public domain W3C validator