MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmconst Unicode version

Theorem lmconst 17249
Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmconst.2  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
lmconst  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) ( ~~> t `  J ) P )

Proof of Theorem lmconst
Dummy variables  j 
k  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 958 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  P  e.  X )
2 simp3 959 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  ZZ )
3 uzid 10434 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
42, 3syl 16 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  ( ZZ>= `  M )
)
5 lmconst.2 . . . . 5  |-  Z  =  ( ZZ>= `  M )
64, 5syl6eleqr 2480 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  Z )
7 idd 22 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( P  e.  u  ->  P  e.  u ) )
87ralrimdva 2741 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( P  e.  u  ->  A. k  e.  ( ZZ>= `  M ) P  e.  u ) )
9 fveq2 5670 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
109raleqdv 2855 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) P  e.  u  <->  A. k  e.  ( ZZ>= `  M ) P  e.  u )
)
1110rspcev 2997 . . . 4  |-  ( ( M  e.  Z  /\  A. k  e.  ( ZZ>= `  M ) P  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
126, 8, 11ee12an 1369 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u ) )
1312ralrimivw 2735 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
)
14 simp1 957 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  J  e.  (TopOn `  X )
)
15 fconst6g 5574 . . . 4  |-  ( P  e.  X  ->  ( Z  X.  { P }
) : Z --> X )
161, 15syl 16 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) : Z --> X )
17 fvconst2g 5886 . . . 4  |-  ( ( P  e.  X  /\  k  e.  Z )  ->  ( ( Z  X.  { P } ) `  k )  =  P )
181, 17sylan 458 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  /\  k  e.  Z )  ->  (
( Z  X.  { P } ) `  k
)  =  P )
1914, 5, 2, 16, 18lmbrf 17248 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  (
( Z  X.  { P } ) ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
) ) )
201, 13, 19mpbir2and 889 1  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) ( ~~> t `  J ) P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2651   E.wrex 2652   {csn 3759   class class class wbr 4155    X. cxp 4818   -->wf 5392   ` cfv 5396   ZZcz 10216   ZZ>=cuz 10422  TopOnctopon 16884   ~~> tclm 17214
This theorem is referenced by:  hlim0  22588  occllem  22655  nlelchi  23414  hmopidmchi  23504  esumcvg  24274
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-pre-lttri 8999  ax-pre-lttrn 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-po 4446  df-so 4447  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-er 6843  df-pm 6959  df-en 7048  df-dom 7049  df-sdom 7050  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-neg 9228  df-z 10217  df-uz 10423  df-top 16888  df-topon 16891  df-lm 17217
  Copyright terms: Public domain W3C validator