MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcvg Unicode version

Theorem lmcvg 17248
Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmcvg.1  |-  Z  =  ( ZZ>= `  M )
lmcvg.3  |-  ( ph  ->  P  e.  U )
lmcvg.4  |-  ( ph  ->  M  e.  ZZ )
lmcvg.5  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcvg.6  |-  ( ph  ->  U  e.  J )
Assertion
Ref Expression
lmcvg  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U )
Distinct variable groups:    j, k, F    j, J, k    P, j, k    ph, j, k    U, j, k    j, M   
j, Z, k
Allowed substitution hint:    M( k)

Proof of Theorem lmcvg
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 lmcvg.6 . 2  |-  ( ph  ->  U  e.  J )
2 lmcvg.5 . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) P )
3 lmrcl 17217 . . . . . . . 8  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )
42, 3syl 16 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
5 eqid 2387 . . . . . . . 8  |-  U. J  =  U. J
65toptopon 16921 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
74, 6sylib 189 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
8 lmcvg.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
9 lmcvg.4 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
107, 8, 9lmbr2 17245 . . . . 5  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e. 
U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
112, 10mpbid 202 . . . 4  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e.  U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )
1211simp3d 971 . . 3  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
13 simpr 448 . . . . . . 7  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  ->  ( F `  k )  e.  u
)
1413ralimi 2724 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )
1514reximi 2756 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )
1615imim2i 14 . . . 4  |-  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) )  ->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) )
1716ralimi 2724 . . 3  |-  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
1812, 17syl 16 . 2  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
19 lmcvg.3 . 2  |-  ( ph  ->  P  e.  U )
20 eleq2 2448 . . . 4  |-  ( u  =  U  ->  ( P  e.  u  <->  P  e.  U ) )
21 eleq2 2448 . . . . 5  |-  ( u  =  U  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  U
) )
2221rexralbidv 2693 . . . 4  |-  ( u  =  U  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  U ) )
2320, 22imbi12d 312 . . 3  |-  ( u  =  U  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  <->  ( P  e.  U  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  U ) ) )
2423rspcv 2991 . 2  |-  ( U  e.  J  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  -> 
( P  e.  U  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U ) ) )
251, 18, 19, 24syl3c 59 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   U.cuni 3957   class class class wbr 4153   dom cdm 4818   ` cfv 5394  (class class class)co 6020    ^pm cpm 6955   CCcc 8921   ZZcz 10214   ZZ>=cuz 10420   Topctop 16881  TopOnctopon 16882   ~~> tclm 17212
This theorem is referenced by:  lmmo  17366  1stccnp  17446  1stckgenlem  17506  iscmet3lem2  19116
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-pre-lttri 8997  ax-pre-lttrn 8998
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-er 6841  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-neg 9226  df-z 10215  df-uz 10421  df-top 16886  df-topon 16889  df-lm 17215
  Copyright terms: Public domain W3C validator