MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmflf Unicode version

Theorem lmflf 17700
Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lmflf.1  |-  Z  =  ( ZZ>= `  M )
lmflf.2  |-  L  =  ( Z filGen ( ZZ>= " Z ) )
Assertion
Ref Expression
lmflf  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( F ( ~~> t `  J ) P  <->  P  e.  ( ( J  fLimf  L ) `  F ) ) )

Proof of Theorem lmflf
Dummy variables  j 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 10233 . . . . . . . 8  |-  ZZ>= : ZZ --> ~P ZZ
2 ffn 5389 . . . . . . . 8  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
31, 2ax-mp 8 . . . . . . 7  |-  ZZ>=  Fn  ZZ
4 lmflf.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
5 uzssz 10247 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
64, 5eqsstri 3208 . . . . . . 7  |-  Z  C_  ZZ
7 imaeq2 5008 . . . . . . . . 9  |-  ( y  =  ( ZZ>= `  j
)  ->  ( F " y )  =  ( F " ( ZZ>= `  j ) ) )
87sseq1d 3205 . . . . . . . 8  |-  ( y  =  ( ZZ>= `  j
)  ->  ( ( F " y )  C_  x 
<->  ( F " ( ZZ>=
`  j ) ) 
C_  x ) )
98rexima 5757 . . . . . . 7  |-  ( (
ZZ>=  Fn  ZZ  /\  Z  C_  ZZ )  ->  ( E. y  e.  ( ZZ>=
" Z ) ( F " y ) 
C_  x  <->  E. j  e.  Z  ( F " ( ZZ>= `  j )
)  C_  x )
)
103, 6, 9mp2an 653 . . . . . 6  |-  ( E. y  e.  ( ZZ>= " Z ) ( F
" y )  C_  x 
<->  E. j  e.  Z  ( F " ( ZZ>= `  j ) )  C_  x )
11 simpl3 960 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  F : Z --> X )
12 ffun 5391 . . . . . . . . 9  |-  ( F : Z --> X  ->  Fun  F )
1311, 12syl 15 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  Fun  F )
14 uzss 10248 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  ( ZZ>=
`  M ) )
1514, 4eleq2s 2375 . . . . . . . . . 10  |-  ( j  e.  Z  ->  ( ZZ>=
`  j )  C_  ( ZZ>= `  M )
)
1615adantl 452 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  ( ZZ>=
`  j )  C_  ( ZZ>= `  M )
)
17 fdm 5393 . . . . . . . . . . 11  |-  ( F : Z --> X  ->  dom  F  =  Z )
1811, 17syl 15 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  dom  F  =  Z )
1918, 4syl6eq 2331 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  dom  F  =  ( ZZ>= `  M
) )
2016, 19sseqtr4d 3215 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  ( ZZ>=
`  j )  C_  dom  F )
21 funimass4 5573 . . . . . . . 8  |-  ( ( Fun  F  /\  ( ZZ>=
`  j )  C_  dom  F )  ->  (
( F " ( ZZ>=
`  j ) ) 
C_  x  <->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) )
2213, 20, 21syl2anc 642 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  (
( F " ( ZZ>=
`  j ) ) 
C_  x  <->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) )
2322rexbidva 2560 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( E. j  e.  Z  ( F " ( ZZ>= `  j ) )  C_  x 
<->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  x ) )
2410, 23syl5rbb 249 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  x  <->  E. y  e.  ( ZZ>= " Z ) ( F " y ) 
C_  x ) )
2524imbi2d 307 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  (
( P  e.  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  x )  <->  ( P  e.  x  ->  E. y  e.  ( ZZ>= " Z ) ( F " y ) 
C_  x ) ) )
2625ralbidv 2563 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( A. x  e.  J  ( P  e.  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  x )  <->  A. x  e.  J  ( P  e.  x  ->  E. y  e.  ( ZZ>= " Z ) ( F " y ) 
C_  x ) ) )
2726anbi2d 684 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  (
( P  e.  X  /\  A. x  e.  J  ( P  e.  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  x ) )  <-> 
( P  e.  X  /\  A. x  e.  J  ( P  e.  x  ->  E. y  e.  (
ZZ>= " Z ) ( F " y ) 
C_  x ) ) ) )
28 simp1 955 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  J  e.  (TopOn `  X )
)
29 simp2 956 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  M  e.  ZZ )
30 simp3 957 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  F : Z --> X )
31 eqidd 2284 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
3228, 4, 29, 30, 31lmbrf 16990 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  J  ( P  e.  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) ) ) )
334uzfbas 17593 . . 3  |-  ( M  e.  ZZ  ->  ( ZZ>=
" Z )  e.  ( fBas `  Z
) )
34 lmflf.2 . . . 4  |-  L  =  ( Z filGen ( ZZ>= " Z ) )
3534flffbas 17690 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( ZZ>=
" Z )  e.  ( fBas `  Z
)  /\  F : Z
--> X )  ->  ( P  e.  ( ( J  fLimf  L ) `  F )  <->  ( P  e.  X  /\  A. x  e.  J  ( P  e.  x  ->  E. y  e.  ( ZZ>= " Z ) ( F " y ) 
C_  x ) ) ) )
3633, 35syl3an2 1216 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( P  e.  ( ( J  fLimf  L ) `  F )  <->  ( P  e.  X  /\  A. x  e.  J  ( P  e.  x  ->  E. y  e.  ( ZZ>= " Z ) ( F " y ) 
C_  x ) ) ) )
3727, 32, 363bitr4d 276 1  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( F ( ~~> t `  J ) P  <->  P  e.  ( ( J  fLimf  L ) `  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   ~Pcpw 3625   class class class wbr 4023   dom cdm 4689   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   ZZcz 10024   ZZ>=cuz 10230  TopOnctopon 16632   ~~> tclm 16956   fBascfbas 17518   filGencfg 17519    fLimf cflf 17630
This theorem is referenced by:  cmetcaulem  18714
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-z 10025  df-uz 10231  df-rest 13327  df-top 16636  df-topon 16639  df-ntr 16757  df-nei 16835  df-lm 16959  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635
  Copyright terms: Public domain W3C validator