MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmfss Unicode version

Theorem lmfss 17040
Description: Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
lmfss  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  C_  ( CC  X.  X ) )

Proof of Theorem lmfss
StepHypRef Expression
1 lmfpm 17039 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  e.  ( X  ^pm  CC ) )
2 toponmax 16682 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
3 cnex 8834 . . . . 5  |-  CC  e.  _V
4 elpmg 6802 . . . . 5  |-  ( ( X  e.  J  /\  CC  e.  _V )  -> 
( F  e.  ( X  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  X
) ) ) )
52, 3, 4sylancl 643 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
65adantr 451 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  -> 
( F  e.  ( X  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  X
) ) ) )
71, 6mpbid 201 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  -> 
( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
87simprd 449 1  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  C_  ( CC  X.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    X. cxp 4703   Fun wfun 5265   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751  TopOnctopon 16648   ~~> tclm 16972
This theorem is referenced by:  lmss  17042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-pm 6791  df-top 16652  df-topon 16655  df-lm 16975
  Copyright terms: Public domain W3C validator