MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmco Unicode version

Theorem lmhmco 16046
Description: The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Assertion
Ref Expression
lmhmco  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  o.  G )  e.  ( M LMHom  O ) )

Proof of Theorem lmhmco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2387 . 2  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2387 . 2  |-  ( .s
`  M )  =  ( .s `  M
)
3 eqid 2387 . 2  |-  ( .s
`  O )  =  ( .s `  O
)
4 eqid 2387 . 2  |-  (Scalar `  M )  =  (Scalar `  M )
5 eqid 2387 . 2  |-  (Scalar `  O )  =  (Scalar `  O )
6 eqid 2387 . 2  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
7 lmhmlmod1 16036 . . 3  |-  ( G  e.  ( M LMHom  N
)  ->  M  e.  LMod )
87adantl 453 . 2  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  M  e.  LMod )
9 lmhmlmod2 16035 . . 3  |-  ( F  e.  ( N LMHom  O
)  ->  O  e.  LMod )
109adantr 452 . 2  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  O  e.  LMod )
11 eqid 2387 . . . 4  |-  (Scalar `  N )  =  (Scalar `  N )
1211, 5lmhmsca 16033 . . 3  |-  ( F  e.  ( N LMHom  O
)  ->  (Scalar `  O
)  =  (Scalar `  N ) )
134, 11lmhmsca 16033 . . 3  |-  ( G  e.  ( M LMHom  N
)  ->  (Scalar `  N
)  =  (Scalar `  M ) )
1412, 13sylan9eq 2439 . 2  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  (Scalar `  O
)  =  (Scalar `  M ) )
15 lmghm 16034 . . 3  |-  ( F  e.  ( N LMHom  O
)  ->  F  e.  ( N  GrpHom  O ) )
16 lmghm 16034 . . 3  |-  ( G  e.  ( M LMHom  N
)  ->  G  e.  ( M  GrpHom  N ) )
17 ghmco 14952 . . 3  |-  ( ( F  e.  ( N 
GrpHom  O )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( F  o.  G )  e.  ( M  GrpHom  O ) )
1815, 16, 17syl2an 464 . 2  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  o.  G )  e.  ( M  GrpHom  O ) )
19 simplr 732 . . . . . 6  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  G  e.  ( M LMHom  N ) )
20 simprl 733 . . . . . 6  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  x  e.  ( Base `  (Scalar `  M ) ) )
21 simprr 734 . . . . . 6  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  y  e.  ( Base `  M
) )
22 eqid 2387 . . . . . . 7  |-  ( .s
`  N )  =  ( .s `  N
)
234, 6, 1, 2, 22lmhmlin 16038 . . . . . 6  |-  ( ( G  e.  ( M LMHom 
N )  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  ( Base `  M ) )  -> 
( G `  (
x ( .s `  M ) y ) )  =  ( x ( .s `  N
) ( G `  y ) ) )
2419, 20, 21, 23syl3anc 1184 . . . . 5  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  ( x
( .s `  M
) y ) )  =  ( x ( .s `  N ) ( G `  y
) ) )
2524fveq2d 5672 . . . 4  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  ( G `  ( x ( .s
`  M ) y ) ) )  =  ( F `  (
x ( .s `  N ) ( G `
 y ) ) ) )
26 simpll 731 . . . . 5  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  F  e.  ( N LMHom  O ) )
2713fveq2d 5672 . . . . . . 7  |-  ( G  e.  ( M LMHom  N
)  ->  ( Base `  (Scalar `  N )
)  =  ( Base `  (Scalar `  M )
) )
2827ad2antlr 708 . . . . . 6  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( Base `  (Scalar `  N
) )  =  (
Base `  (Scalar `  M
) ) )
2920, 28eleqtrrd 2464 . . . . 5  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  x  e.  ( Base `  (Scalar `  N ) ) )
30 eqid 2387 . . . . . . . . 9  |-  ( Base `  N )  =  (
Base `  N )
311, 30lmhmf 16037 . . . . . . . 8  |-  ( G  e.  ( M LMHom  N
)  ->  G :
( Base `  M ) --> ( Base `  N )
)
3231adantl 453 . . . . . . 7  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  G :
( Base `  M ) --> ( Base `  N )
)
3332ffvelrnda 5809 . . . . . 6  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  y  e.  ( Base `  M
) )  ->  ( G `  y )  e.  ( Base `  N
) )
3433adantrl 697 . . . . 5  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  y )  e.  ( Base `  N
) )
35 eqid 2387 . . . . . 6  |-  ( Base `  (Scalar `  N )
)  =  ( Base `  (Scalar `  N )
)
3611, 35, 30, 22, 3lmhmlin 16038 . . . . 5  |-  ( ( F  e.  ( N LMHom 
O )  /\  x  e.  ( Base `  (Scalar `  N ) )  /\  ( G `  y )  e.  ( Base `  N
) )  ->  ( F `  ( x
( .s `  N
) ( G `  y ) ) )  =  ( x ( .s `  O ) ( F `  ( G `  y )
) ) )
3726, 29, 34, 36syl3anc 1184 . . . 4  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  ( x
( .s `  N
) ( G `  y ) ) )  =  ( x ( .s `  O ) ( F `  ( G `  y )
) ) )
3825, 37eqtrd 2419 . . 3  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  ( G `  ( x ( .s
`  M ) y ) ) )  =  ( x ( .s
`  O ) ( F `  ( G `
 y ) ) ) )
39 ffn 5531 . . . . . 6  |-  ( G : ( Base `  M
) --> ( Base `  N
)  ->  G  Fn  ( Base `  M )
)
4032, 39syl 16 . . . . 5  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  G  Fn  ( Base `  M )
)
4140adantr 452 . . . 4  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  G  Fn  ( Base `  M
) )
427ad2antlr 708 . . . . 5  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  M  e.  LMod )
431, 4, 2, 6lmodvscl 15894 . . . . 5  |-  ( ( M  e.  LMod  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  ( Base `  M ) )  -> 
( x ( .s
`  M ) y )  e.  ( Base `  M ) )
4442, 20, 21, 43syl3anc 1184 . . . 4  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( .s `  M ) y )  e.  ( Base `  M
) )
45 fvco2 5737 . . . 4  |-  ( ( G  Fn  ( Base `  M )  /\  (
x ( .s `  M ) y )  e.  ( Base `  M
) )  ->  (
( F  o.  G
) `  ( x
( .s `  M
) y ) )  =  ( F `  ( G `  ( x ( .s `  M
) y ) ) ) )
4641, 44, 45syl2anc 643 . . 3  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o.  G
) `  ( x
( .s `  M
) y ) )  =  ( F `  ( G `  ( x ( .s `  M
) y ) ) ) )
47 fvco2 5737 . . . . 5  |-  ( ( G  Fn  ( Base `  M )  /\  y  e.  ( Base `  M
) )  ->  (
( F  o.  G
) `  y )  =  ( F `  ( G `  y ) ) )
4841, 21, 47syl2anc 643 . . . 4  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o.  G
) `  y )  =  ( F `  ( G `  y ) ) )
4948oveq2d 6036 . . 3  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( .s `  O ) ( ( F  o.  G ) `
 y ) )  =  ( x ( .s `  O ) ( F `  ( G `  y )
) ) )
5038, 46, 493eqtr4d 2429 . 2  |-  ( ( ( F  e.  ( N LMHom  O )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o.  G
) `  ( x
( .s `  M
) y ) )  =  ( x ( .s `  O ) ( ( F  o.  G ) `  y
) ) )
511, 2, 3, 4, 5, 6, 8, 10, 14, 18, 50islmhmd 16042 1  |-  ( ( F  e.  ( N LMHom 
O )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  o.  G )  e.  ( M LMHom  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    o. ccom 4822    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020   Basecbs 13396  Scalarcsca 13459   .scvsca 13460    GrpHom cghm 14930   LModclmod 15877   LMHom clmhm 16022
This theorem is referenced by:  nmhmco  18661  mendrng  27169
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-map 6956  df-0g 13654  df-mnd 14617  df-mhm 14665  df-grp 14739  df-ghm 14931  df-lmod 15879  df-lmhm 16025
  Copyright terms: Public domain W3C validator