Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgima Unicode version

Theorem lmhmfgima 27182
Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lmhmfgima.y  |-  Y  =  ( Ts  ( F " A ) )
lmhmfgima.x  |-  X  =  ( Ss  A )
lmhmfgima.u  |-  U  =  ( LSubSp `  S )
lmhmfgima.xf  |-  ( ph  ->  X  e. LFinGen )
lmhmfgima.a  |-  ( ph  ->  A  e.  U )
lmhmfgima.f  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
Assertion
Ref Expression
lmhmfgima  |-  ( ph  ->  Y  e. LFinGen )

Proof of Theorem lmhmfgima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 lmhmfgima.y . 2  |-  Y  =  ( Ts  ( F " A ) )
2 lmhmfgima.xf . . . 4  |-  ( ph  ->  X  e. LFinGen )
3 lmhmfgima.f . . . . . 6  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
4 lmhmlmod1 15790 . . . . . 6  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
53, 4syl 15 . . . . 5  |-  ( ph  ->  S  e.  LMod )
6 lmhmfgima.a . . . . 5  |-  ( ph  ->  A  e.  U )
7 lmhmfgima.x . . . . . 6  |-  X  =  ( Ss  A )
8 lmhmfgima.u . . . . . 6  |-  U  =  ( LSubSp `  S )
9 eqid 2283 . . . . . 6  |-  ( LSpan `  S )  =  (
LSpan `  S )
10 eqid 2283 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
117, 8, 9, 10islssfg2 27169 . . . . 5  |-  ( ( S  e.  LMod  /\  A  e.  U )  ->  ( X  e. LFinGen  <->  E. x  e.  ( ~P ( Base `  S
)  i^i  Fin )
( ( LSpan `  S
) `  x )  =  A ) )
125, 6, 11syl2anc 642 . . . 4  |-  ( ph  ->  ( X  e. LFinGen  <->  E. x  e.  ( ~P ( Base `  S )  i^i  Fin ) ( ( LSpan `  S ) `  x
)  =  A ) )
132, 12mpbid 201 . . 3  |-  ( ph  ->  E. x  e.  ( ~P ( Base `  S
)  i^i  Fin )
( ( LSpan `  S
) `  x )  =  A )
14 inss1 3389 . . . . . . . . . 10  |-  ( ~P ( Base `  S
)  i^i  Fin )  C_ 
~P ( Base `  S
)
1514sseli 3176 . . . . . . . . 9  |-  ( x  e.  ( ~P ( Base `  S )  i^i 
Fin )  ->  x  e.  ~P ( Base `  S
) )
16 elpwi 3633 . . . . . . . . 9  |-  ( x  e.  ~P ( Base `  S )  ->  x  C_  ( Base `  S
) )
1715, 16syl 15 . . . . . . . 8  |-  ( x  e.  ( ~P ( Base `  S )  i^i 
Fin )  ->  x  C_  ( Base `  S
) )
18 eqid 2283 . . . . . . . . 9  |-  ( LSpan `  T )  =  (
LSpan `  T )
1910, 9, 18lmhmlsp 15806 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  x  C_  ( Base `  S
) )  ->  ( F " ( ( LSpan `  S ) `  x
) )  =  ( ( LSpan `  T ) `  ( F " x
) ) )
203, 17, 19syl2an 463 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( F " ( ( LSpan `  S
) `  x )
)  =  ( (
LSpan `  T ) `  ( F " x ) ) )
2120oveq2d 5874 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( Ts  ( F " ( ( LSpan `  S ) `  x
) ) )  =  ( Ts  ( ( LSpan `  T ) `  ( F " x ) ) ) )
22 lmhmlmod2 15789 . . . . . . . . 9  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
233, 22syl 15 . . . . . . . 8  |-  ( ph  ->  T  e.  LMod )
2423adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  T  e.  LMod )
25 imassrn 5025 . . . . . . . . 9  |-  ( F
" x )  C_  ran  F
26 eqid 2283 . . . . . . . . . . . 12  |-  ( Base `  T )  =  (
Base `  T )
2710, 26lmhmf 15791 . . . . . . . . . . 11  |-  ( F  e.  ( S LMHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
283, 27syl 15 . . . . . . . . . 10  |-  ( ph  ->  F : ( Base `  S ) --> ( Base `  T ) )
29 frn 5395 . . . . . . . . . 10  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  ran  F  C_  ( Base `  T )
)
3028, 29syl 15 . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  ( Base `  T ) )
3125, 30syl5ss 3190 . . . . . . . 8  |-  ( ph  ->  ( F " x
)  C_  ( Base `  T ) )
3231adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( F " x )  C_  ( Base `  T ) )
33 inss2 3390 . . . . . . . . . 10  |-  ( ~P ( Base `  S
)  i^i  Fin )  C_ 
Fin
3433sseli 3176 . . . . . . . . 9  |-  ( x  e.  ( ~P ( Base `  S )  i^i 
Fin )  ->  x  e.  Fin )
3534adantl 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  x  e.  Fin )
36 ffun 5391 . . . . . . . . . . 11  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  Fun  F )
3728, 36syl 15 . . . . . . . . . 10  |-  ( ph  ->  Fun  F )
3837adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  Fun  F )
3917adantl 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  x  C_  ( Base `  S ) )
40 fdm 5393 . . . . . . . . . . . 12  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  dom  F  =  ( Base `  S
) )
4128, 40syl 15 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  (
Base `  S )
)
4241adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  dom  F  =  ( Base `  S
) )
4339, 42sseqtr4d 3215 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  x  C_  dom  F )
44 fores 5460 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  C_ 
dom  F )  -> 
( F  |`  x
) : x -onto-> ( F " x ) )
4538, 43, 44syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( F  |`  x ) : x
-onto-> ( F " x
) )
46 fofi 7142 . . . . . . . 8  |-  ( ( x  e.  Fin  /\  ( F  |`  x ) : x -onto-> ( F
" x ) )  ->  ( F "
x )  e.  Fin )
4735, 45, 46syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( F " x )  e.  Fin )
48 eqid 2283 . . . . . . . 8  |-  ( Ts  ( ( LSpan `  T ) `  ( F " x
) ) )  =  ( Ts  ( ( LSpan `  T ) `  ( F " x ) ) )
4918, 26, 48islssfgi 27170 . . . . . . 7  |-  ( ( T  e.  LMod  /\  ( F " x )  C_  ( Base `  T )  /\  ( F " x
)  e.  Fin )  ->  ( Ts  ( ( LSpan `  T ) `  ( F " x ) ) )  e. LFinGen )
5024, 32, 47, 49syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( Ts  (
( LSpan `  T ) `  ( F " x
) ) )  e. LFinGen )
5121, 50eqeltrd 2357 . . . . 5  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( Ts  ( F " ( ( LSpan `  S ) `  x
) ) )  e. LFinGen )
52 imaeq2 5008 . . . . . . 7  |-  ( ( ( LSpan `  S ) `  x )  =  A  ->  ( F "
( ( LSpan `  S
) `  x )
)  =  ( F
" A ) )
5352oveq2d 5874 . . . . . 6  |-  ( ( ( LSpan `  S ) `  x )  =  A  ->  ( Ts  ( F
" ( ( LSpan `  S ) `  x
) ) )  =  ( Ts  ( F " A ) ) )
5453eleq1d 2349 . . . . 5  |-  ( ( ( LSpan `  S ) `  x )  =  A  ->  ( ( Ts  ( F " ( (
LSpan `  S ) `  x ) ) )  e. LFinGen 
<->  ( Ts  ( F " A ) )  e. LFinGen ) )
5551, 54syl5ibcom 211 . . . 4  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( (
( LSpan `  S ) `  x )  =  A  ->  ( Ts  ( F
" A ) )  e. LFinGen ) )
5655rexlimdva 2667 . . 3  |-  ( ph  ->  ( E. x  e.  ( ~P ( Base `  S )  i^i  Fin ) ( ( LSpan `  S ) `  x
)  =  A  -> 
( Ts  ( F " A ) )  e. LFinGen ) )
5713, 56mpd 14 . 2  |-  ( ph  ->  ( Ts  ( F " A ) )  e. LFinGen )
581, 57syl5eqel 2367 1  |-  ( ph  ->  Y  e. LFinGen )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5858   Fincfn 6863   Basecbs 13148   ↾s cress 13149   LModclmod 15627   LSubSpclss 15689   LSpanclspn 15728   LMHom clmhm 15776  LFinGenclfig 27165
This theorem is referenced by:  lnmepi  27183
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-sca 13224  df-vsca 13225  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-ghm 14681  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lmhm 15779  df-lfig 27166
  Copyright terms: Public domain W3C validator