MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmima Unicode version

Theorem lmhmima 16051
Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmima.x  |-  X  =  ( LSubSp `  S )
lmhmima.y  |-  Y  =  ( LSubSp `  T )
Assertion
Ref Expression
lmhmima  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  ( F " U )  e.  Y )

Proof of Theorem lmhmima
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 16035 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
21adantr 452 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  F  e.  ( S  GrpHom  T ) )
3 lmhmlmod1 16037 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
43adantr 452 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  S  e.  LMod )
5 simpr 448 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  U  e.  X )
6 lmhmima.x . . . . 5  |-  X  =  ( LSubSp `  S )
76lsssubg 15961 . . . 4  |-  ( ( S  e.  LMod  /\  U  e.  X )  ->  U  e.  (SubGrp `  S )
)
84, 5, 7syl2anc 643 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  U  e.  (SubGrp `  S )
)
9 ghmima 14954 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (SubGrp `  S )
)  ->  ( F " U )  e.  (SubGrp `  T ) )
102, 8, 9syl2anc 643 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  ( F " U )  e.  (SubGrp `  T )
)
11 eqid 2388 . . . . . . . . . 10  |-  ( Base `  S )  =  (
Base `  S )
12 eqid 2388 . . . . . . . . . 10  |-  ( Base `  T )  =  (
Base `  T )
1311, 12lmhmf 16038 . . . . . . . . 9  |-  ( F  e.  ( S LMHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
1413adantr 452 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  F : ( Base `  S
) --> ( Base `  T
) )
15 ffn 5532 . . . . . . . 8  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  F  Fn  ( Base `  S )
)
1614, 15syl 16 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  F  Fn  ( Base `  S
) )
1711, 6lssss 15941 . . . . . . . 8  |-  ( U  e.  X  ->  U  C_  ( Base `  S
) )
185, 17syl 16 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  U  C_  ( Base `  S
) )
19 fvelimab 5722 . . . . . . 7  |-  ( ( F  Fn  ( Base `  S )  /\  U  C_  ( Base `  S
) )  ->  (
b  e.  ( F
" U )  <->  E. c  e.  U  ( F `  c )  =  b ) )
2016, 18, 19syl2anc 643 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  (
b  e.  ( F
" U )  <->  E. c  e.  U  ( F `  c )  =  b ) )
2120adantr 452 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  a  e.  ( Base `  (Scalar `  T
) ) )  -> 
( b  e.  ( F " U )  <->  E. c  e.  U  ( F `  c )  =  b ) )
22 simpll 731 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  ->  F  e.  ( S LMHom  T ) )
23 eqid 2388 . . . . . . . . . . . . . . . 16  |-  (Scalar `  S )  =  (Scalar `  S )
24 eqid 2388 . . . . . . . . . . . . . . . 16  |-  (Scalar `  T )  =  (Scalar `  T )
2523, 24lmhmsca 16034 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  T
)  =  (Scalar `  S ) )
2625adantr 452 . . . . . . . . . . . . . 14  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  (Scalar `  T )  =  (Scalar `  S ) )
2726fveq2d 5673 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  ( Base `  (Scalar `  T
) )  =  (
Base `  (Scalar `  S
) ) )
2827eleq2d 2455 . . . . . . . . . . . 12  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  (
a  e.  ( Base `  (Scalar `  T )
)  <->  a  e.  (
Base `  (Scalar `  S
) ) ) )
2928biimpa 471 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  a  e.  ( Base `  (Scalar `  T
) ) )  -> 
a  e.  ( Base `  (Scalar `  S )
) )
3029adantrr 698 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
a  e.  ( Base `  (Scalar `  S )
) )
3118sselda 3292 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  c  e.  U
)  ->  c  e.  ( Base `  S )
)
3231adantrl 697 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
c  e.  ( Base `  S ) )
33 eqid 2388 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  S )
)
34 eqid 2388 . . . . . . . . . . 11  |-  ( .s
`  S )  =  ( .s `  S
)
35 eqid 2388 . . . . . . . . . . 11  |-  ( .s
`  T )  =  ( .s `  T
)
3623, 33, 11, 34, 35lmhmlin 16039 . . . . . . . . . 10  |-  ( ( F  e.  ( S LMHom 
T )  /\  a  e.  ( Base `  (Scalar `  S ) )  /\  c  e.  ( Base `  S ) )  -> 
( F `  (
a ( .s `  S ) c ) )  =  ( a ( .s `  T
) ( F `  c ) ) )
3722, 30, 32, 36syl3anc 1184 . . . . . . . . 9  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
( F `  (
a ( .s `  S ) c ) )  =  ( a ( .s `  T
) ( F `  c ) ) )
3822, 13, 153syl 19 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  ->  F  Fn  ( Base `  S ) )
39 simplr 732 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  ->  U  e.  X )
4039, 17syl 16 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  ->  U  C_  ( Base `  S
) )
414adantr 452 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  ->  S  e.  LMod )
42 simprr 734 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
c  e.  U )
4323, 34, 33, 6lssvscl 15959 . . . . . . . . . . 11  |-  ( ( ( S  e.  LMod  /\  U  e.  X )  /\  ( a  e.  ( Base `  (Scalar `  S ) )  /\  c  e.  U )
)  ->  ( a
( .s `  S
) c )  e.  U )
4441, 39, 30, 42, 43syl22anc 1185 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
( a ( .s
`  S ) c )  e.  U )
45 fnfvima 5916 . . . . . . . . . 10  |-  ( ( F  Fn  ( Base `  S )  /\  U  C_  ( Base `  S
)  /\  ( a
( .s `  S
) c )  e.  U )  ->  ( F `  ( a
( .s `  S
) c ) )  e.  ( F " U ) )
4638, 40, 44, 45syl3anc 1184 . . . . . . . . 9  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
( F `  (
a ( .s `  S ) c ) )  e.  ( F
" U ) )
4737, 46eqeltrrd 2463 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
( a ( .s
`  T ) ( F `  c ) )  e.  ( F
" U ) )
4847anassrs 630 . . . . . . 7  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X
)  /\  a  e.  ( Base `  (Scalar `  T
) ) )  /\  c  e.  U )  ->  ( a ( .s
`  T ) ( F `  c ) )  e.  ( F
" U ) )
49 oveq2 6029 . . . . . . . 8  |-  ( ( F `  c )  =  b  ->  (
a ( .s `  T ) ( F `
 c ) )  =  ( a ( .s `  T ) b ) )
5049eleq1d 2454 . . . . . . 7  |-  ( ( F `  c )  =  b  ->  (
( a ( .s
`  T ) ( F `  c ) )  e.  ( F
" U )  <->  ( a
( .s `  T
) b )  e.  ( F " U
) ) )
5148, 50syl5ibcom 212 . . . . . 6  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X
)  /\  a  e.  ( Base `  (Scalar `  T
) ) )  /\  c  e.  U )  ->  ( ( F `  c )  =  b  ->  ( a ( .s `  T ) b )  e.  ( F " U ) ) )
5251rexlimdva 2774 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  a  e.  ( Base `  (Scalar `  T
) ) )  -> 
( E. c  e.  U  ( F `  c )  =  b  ->  ( a ( .s `  T ) b )  e.  ( F " U ) ) )
5321, 52sylbid 207 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  a  e.  ( Base `  (Scalar `  T
) ) )  -> 
( b  e.  ( F " U )  ->  ( a ( .s `  T ) b )  e.  ( F " U ) ) )
5453impr 603 . . 3  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  b  e.  ( F " U
) ) )  -> 
( a ( .s
`  T ) b )  e.  ( F
" U ) )
5554ralrimivva 2742 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  A. a  e.  ( Base `  (Scalar `  T ) ) A. b  e.  ( F " U ) ( a ( .s `  T
) b )  e.  ( F " U
) )
56 lmhmlmod2 16036 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
5756adantr 452 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  T  e.  LMod )
58 eqid 2388 . . . 4  |-  ( Base `  (Scalar `  T )
)  =  ( Base `  (Scalar `  T )
)
59 lmhmima.y . . . 4  |-  Y  =  ( LSubSp `  T )
6024, 58, 12, 35, 59islss4 15966 . . 3  |-  ( T  e.  LMod  ->  ( ( F " U )  e.  Y  <->  ( ( F " U )  e.  (SubGrp `  T )  /\  A. a  e.  (
Base `  (Scalar `  T
) ) A. b  e.  ( F " U
) ( a ( .s `  T ) b )  e.  ( F " U ) ) ) )
6157, 60syl 16 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  (
( F " U
)  e.  Y  <->  ( ( F " U )  e.  (SubGrp `  T )  /\  A. a  e.  (
Base `  (Scalar `  T
) ) A. b  e.  ( F " U
) ( a ( .s `  T ) b )  e.  ( F " U ) ) ) )
6210, 55, 61mpbir2and 889 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  ( F " U )  e.  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651    C_ wss 3264   "cima 4822    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021   Basecbs 13397  Scalarcsca 13460   .scvsca 13461  SubGrpcsubg 14866    GrpHom cghm 14931   LModclmod 15878   LSubSpclss 15936   LMHom clmhm 16023
This theorem is referenced by:  lmhmlsp  16053  lmhmrnlss  16054
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-2 9991  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-0g 13655  df-mnd 14618  df-grp 14740  df-minusg 14741  df-sbg 14742  df-subg 14869  df-ghm 14932  df-mgp 15577  df-rng 15591  df-ur 15593  df-lmod 15880  df-lss 15937  df-lmhm 16026
  Copyright terms: Public domain W3C validator