MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlin Structured version   Unicode version

Theorem lmhmlin 16111
Description: A homomorphism of left modules is  K-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmlin.k  |-  K  =  (Scalar `  S )
lmhmlin.b  |-  B  =  ( Base `  K
)
lmhmlin.e  |-  E  =  ( Base `  S
)
lmhmlin.m  |-  .x.  =  ( .s `  S )
lmhmlin.n  |-  .X.  =  ( .s `  T )
Assertion
Ref Expression
lmhmlin  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  B  /\  Y  e.  E )  ->  ( F `  ( X  .x.  Y ) )  =  ( X  .X.  ( F `  Y )
) )

Proof of Theorem lmhmlin
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlin.k . . . . . 6  |-  K  =  (Scalar `  S )
2 eqid 2436 . . . . . 6  |-  (Scalar `  T )  =  (Scalar `  T )
3 lmhmlin.b . . . . . 6  |-  B  =  ( Base `  K
)
4 lmhmlin.e . . . . . 6  |-  E  =  ( Base `  S
)
5 lmhmlin.m . . . . . 6  |-  .x.  =  ( .s `  S )
6 lmhmlin.n . . . . . 6  |-  .X.  =  ( .s `  T )
71, 2, 3, 4, 5, 6islmhm 16103 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  <->  ( ( S  e.  LMod  /\  T  e. 
LMod )  /\  ( F  e.  ( S  GrpHom  T )  /\  (Scalar `  T )  =  K  /\  A. a  e.  B  A. b  e.  E  ( F `  ( a  .x.  b
) )  =  ( a  .X.  ( F `  b ) ) ) ) )
87simprbi 451 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  ( F  e.  ( S  GrpHom  T )  /\  (Scalar `  T
)  =  K  /\  A. a  e.  B  A. b  e.  E  ( F `  ( a  .x.  b ) )  =  ( a  .X.  ( F `  b )
) ) )
98simp3d 971 . . 3  |-  ( F  e.  ( S LMHom  T
)  ->  A. a  e.  B  A. b  e.  E  ( F `  ( a  .x.  b
) )  =  ( a  .X.  ( F `  b ) ) )
10 oveq1 6088 . . . . . 6  |-  ( a  =  X  ->  (
a  .x.  b )  =  ( X  .x.  b ) )
1110fveq2d 5732 . . . . 5  |-  ( a  =  X  ->  ( F `  ( a  .x.  b ) )  =  ( F `  ( X  .x.  b ) ) )
12 oveq1 6088 . . . . 5  |-  ( a  =  X  ->  (
a  .X.  ( F `  b ) )  =  ( X  .X.  ( F `  b )
) )
1311, 12eqeq12d 2450 . . . 4  |-  ( a  =  X  ->  (
( F `  (
a  .x.  b )
)  =  ( a 
.X.  ( F `  b ) )  <->  ( F `  ( X  .x.  b
) )  =  ( X  .X.  ( F `  b ) ) ) )
14 oveq2 6089 . . . . . 6  |-  ( b  =  Y  ->  ( X  .x.  b )  =  ( X  .x.  Y
) )
1514fveq2d 5732 . . . . 5  |-  ( b  =  Y  ->  ( F `  ( X  .x.  b ) )  =  ( F `  ( X  .x.  Y ) ) )
16 fveq2 5728 . . . . . 6  |-  ( b  =  Y  ->  ( F `  b )  =  ( F `  Y ) )
1716oveq2d 6097 . . . . 5  |-  ( b  =  Y  ->  ( X  .X.  ( F `  b ) )  =  ( X  .X.  ( F `  Y )
) )
1815, 17eqeq12d 2450 . . . 4  |-  ( b  =  Y  ->  (
( F `  ( X  .x.  b ) )  =  ( X  .X.  ( F `  b ) )  <->  ( F `  ( X  .x.  Y ) )  =  ( X 
.X.  ( F `  Y ) ) ) )
1913, 18rspc2v 3058 . . 3  |-  ( ( X  e.  B  /\  Y  e.  E )  ->  ( A. a  e.  B  A. b  e.  E  ( F `  ( a  .x.  b
) )  =  ( a  .X.  ( F `  b ) )  -> 
( F `  ( X  .x.  Y ) )  =  ( X  .X.  ( F `  Y ) ) ) )
209, 19syl5com 28 . 2  |-  ( F  e.  ( S LMHom  T
)  ->  ( ( X  e.  B  /\  Y  e.  E )  ->  ( F `  ( X  .x.  Y ) )  =  ( X  .X.  ( F `  Y ) ) ) )
21203impib 1151 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  B  /\  Y  e.  E )  ->  ( F `  ( X  .x.  Y ) )  =  ( X  .X.  ( F `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   ` cfv 5454  (class class class)co 6081   Basecbs 13469  Scalarcsca 13532   .scvsca 13533    GrpHom cghm 15003   LModclmod 15950   LMHom clmhm 16095
This theorem is referenced by:  islmhm2  16114  lmhmco  16119  lmhmplusg  16120  lmhmvsca  16121  lmhmf1o  16122  lmhmima  16123  lmhmpreima  16124  reslmhm  16128  reslmhm2  16129  reslmhm2b  16130  lmhmeql  16131  ipass  16876  nmoleub2lem3  19123  nmoleub3  19127  lindfmm  27274  mendassa  27479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-lmhm 16098
  Copyright terms: Public domain W3C validator