MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlmod2 Unicode version

Theorem lmhmlmod2 15789
Description: A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmhmlmod2  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )

Proof of Theorem lmhmlmod2
StepHypRef Expression
1 eqid 2283 . . 3  |-  (Scalar `  S )  =  (Scalar `  S )
2 eqid 2283 . . 3  |-  (Scalar `  T )  =  (Scalar `  T )
31, 2lmhmlem 15786 . 2  |-  ( F  e.  ( S LMHom  T
)  ->  ( ( S  e.  LMod  /\  T  e.  LMod )  /\  ( F  e.  ( S  GrpHom  T )  /\  (Scalar `  T )  =  (Scalar `  S ) ) ) )
4 simplr 731 . 2  |-  ( ( ( S  e.  LMod  /\  T  e.  LMod )  /\  ( F  e.  ( S  GrpHom  T )  /\  (Scalar `  T )  =  (Scalar `  S )
) )  ->  T  e.  LMod )
53, 4syl 15 1  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858  Scalarcsca 13211    GrpHom cghm 14680   LModclmod 15627   LMHom clmhm 15776
This theorem is referenced by:  lmhmco  15800  lmhmplusg  15801  lmhmvsca  15802  lmhmf1o  15803  lmhmima  15804  lmhmpreima  15805  lmhmlsp  15806  lmhmkerlss  15808  reslmhm  15809  islmim  15815  lmicrcl  15824  lmhmclm  18584  lmhmfgima  27182  lnmepi  27183  lmhmfgsplit  27184  lmhmlnmsplit  27185  lindfmm  27297  lindsmm  27298
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-lmhm 15779
  Copyright terms: Public domain W3C validator