MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmplusg Unicode version

Theorem lmhmplusg 15850
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
lmhmplusg.p  |-  .+  =  ( +g  `  N )
Assertion
Ref Expression
lmhmplusg  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  o F  .+  G )  e.  ( M LMHom  N
) )

Proof of Theorem lmhmplusg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2316 . 2  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2316 . 2  |-  ( .s
`  M )  =  ( .s `  M
)
3 eqid 2316 . 2  |-  ( .s
`  N )  =  ( .s `  N
)
4 eqid 2316 . 2  |-  (Scalar `  M )  =  (Scalar `  M )
5 eqid 2316 . 2  |-  (Scalar `  N )  =  (Scalar `  N )
6 eqid 2316 . 2  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
7 lmhmlmod1 15839 . . 3  |-  ( F  e.  ( M LMHom  N
)  ->  M  e.  LMod )
87adantr 451 . 2  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  M  e.  LMod )
9 lmhmlmod2 15838 . . 3  |-  ( F  e.  ( M LMHom  N
)  ->  N  e.  LMod )
109adantr 451 . 2  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  N  e.  LMod )
114, 5lmhmsca 15836 . . 3  |-  ( F  e.  ( M LMHom  N
)  ->  (Scalar `  N
)  =  (Scalar `  M ) )
1211adantr 451 . 2  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  (Scalar `  N
)  =  (Scalar `  M ) )
13 lmodabl 15721 . . . 4  |-  ( N  e.  LMod  ->  N  e. 
Abel )
1410, 13syl 15 . . 3  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  N  e.  Abel )
15 lmghm 15837 . . . 4  |-  ( F  e.  ( M LMHom  N
)  ->  F  e.  ( M  GrpHom  N ) )
1615adantr 451 . . 3  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  F  e.  ( M  GrpHom  N ) )
17 lmghm 15837 . . . 4  |-  ( G  e.  ( M LMHom  N
)  ->  G  e.  ( M  GrpHom  N ) )
1817adantl 452 . . 3  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  G  e.  ( M  GrpHom  N ) )
19 lmhmplusg.p . . . 4  |-  .+  =  ( +g  `  N )
2019ghmplusg 15187 . . 3  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( F  o F  .+  G )  e.  ( M  GrpHom  N ) )
2114, 16, 18, 20syl3anc 1182 . 2  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  o F  .+  G )  e.  ( M  GrpHom  N ) )
22 simpll 730 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  F  e.  ( M LMHom  N ) )
23 simprl 732 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  x  e.  ( Base `  (Scalar `  M ) ) )
24 simprr 733 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  y  e.  ( Base `  M
) )
254, 6, 1, 2, 3lmhmlin 15841 . . . . . 6  |-  ( ( F  e.  ( M LMHom 
N )  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  ( Base `  M ) )  -> 
( F `  (
x ( .s `  M ) y ) )  =  ( x ( .s `  N
) ( F `  y ) ) )
2622, 23, 24, 25syl3anc 1182 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  ( x
( .s `  M
) y ) )  =  ( x ( .s `  N ) ( F `  y
) ) )
27 simplr 731 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  G  e.  ( M LMHom  N ) )
284, 6, 1, 2, 3lmhmlin 15841 . . . . . 6  |-  ( ( G  e.  ( M LMHom 
N )  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  ( Base `  M ) )  -> 
( G `  (
x ( .s `  M ) y ) )  =  ( x ( .s `  N
) ( G `  y ) ) )
2927, 23, 24, 28syl3anc 1182 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  ( x
( .s `  M
) y ) )  =  ( x ( .s `  N ) ( G `  y
) ) )
3026, 29oveq12d 5918 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F `  (
x ( .s `  M ) y ) )  .+  ( G `
 ( x ( .s `  M ) y ) ) )  =  ( ( x ( .s `  N
) ( F `  y ) )  .+  ( x ( .s
`  N ) ( G `  y ) ) ) )
319ad2antrr 706 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  N  e.  LMod )
3211fveq2d 5567 . . . . . . 7  |-  ( F  e.  ( M LMHom  N
)  ->  ( Base `  (Scalar `  N )
)  =  ( Base `  (Scalar `  M )
) )
3332ad2antrr 706 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( Base `  (Scalar `  N
) )  =  (
Base `  (Scalar `  M
) ) )
3423, 33eleqtrrd 2393 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  x  e.  ( Base `  (Scalar `  N ) ) )
35 eqid 2316 . . . . . . . 8  |-  ( Base `  N )  =  (
Base `  N )
361, 35lmhmf 15840 . . . . . . 7  |-  ( F  e.  ( M LMHom  N
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
3736ad2antrr 706 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  F : ( Base `  M
) --> ( Base `  N
) )
38 ffvelrn 5701 . . . . . 6  |-  ( ( F : ( Base `  M ) --> ( Base `  N )  /\  y  e.  ( Base `  M
) )  ->  ( F `  y )  e.  ( Base `  N
) )
3937, 24, 38syl2anc 642 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  y )  e.  ( Base `  N
) )
401, 35lmhmf 15840 . . . . . . 7  |-  ( G  e.  ( M LMHom  N
)  ->  G :
( Base `  M ) --> ( Base `  N )
)
4140ad2antlr 707 . . . . . 6  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  G : ( Base `  M
) --> ( Base `  N
) )
42 ffvelrn 5701 . . . . . 6  |-  ( ( G : ( Base `  M ) --> ( Base `  N )  /\  y  e.  ( Base `  M
) )  ->  ( G `  y )  e.  ( Base `  N
) )
4341, 24, 42syl2anc 642 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  y )  e.  ( Base `  N
) )
44 eqid 2316 . . . . . 6  |-  ( Base `  (Scalar `  N )
)  =  ( Base `  (Scalar `  N )
)
4535, 19, 5, 3, 44lmodvsdi 15699 . . . . 5  |-  ( ( N  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  N )
)  /\  ( F `  y )  e.  (
Base `  N )  /\  ( G `  y
)  e.  ( Base `  N ) ) )  ->  ( x ( .s `  N ) ( ( F `  y )  .+  ( G `  y )
) )  =  ( ( x ( .s
`  N ) ( F `  y ) )  .+  ( x ( .s `  N
) ( G `  y ) ) ) )
4631, 34, 39, 43, 45syl13anc 1184 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( .s `  N ) ( ( F `  y ) 
.+  ( G `  y ) ) )  =  ( ( x ( .s `  N
) ( F `  y ) )  .+  ( x ( .s
`  N ) ( G `  y ) ) ) )
4730, 46eqtr4d 2351 . . 3  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F `  (
x ( .s `  M ) y ) )  .+  ( G `
 ( x ( .s `  M ) y ) ) )  =  ( x ( .s `  N ) ( ( F `  y )  .+  ( G `  y )
) ) )
48 ffn 5427 . . . . 5  |-  ( F : ( Base `  M
) --> ( Base `  N
)  ->  F  Fn  ( Base `  M )
)
4937, 48syl 15 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  F  Fn  ( Base `  M
) )
50 ffn 5427 . . . . 5  |-  ( G : ( Base `  M
) --> ( Base `  N
)  ->  G  Fn  ( Base `  M )
)
5141, 50syl 15 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  G  Fn  ( Base `  M
) )
52 fvex 5577 . . . . 5  |-  ( Base `  M )  e.  _V
5352a1i 10 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  ( Base `  M )  e. 
_V )
547ad2antrr 706 . . . . 5  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  M  e.  LMod )
551, 4, 2, 6lmodvscl 15693 . . . . 5  |-  ( ( M  e.  LMod  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  ( Base `  M ) )  -> 
( x ( .s
`  M ) y )  e.  ( Base `  M ) )
5654, 23, 24, 55syl3anc 1182 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( .s `  M ) y )  e.  ( Base `  M
) )
57 fnfvof 6132 . . . 4  |-  ( ( ( F  Fn  ( Base `  M )  /\  G  Fn  ( Base `  M ) )  /\  ( ( Base `  M
)  e.  _V  /\  ( x ( .s
`  M ) y )  e.  ( Base `  M ) ) )  ->  ( ( F  o F  .+  G
) `  ( x
( .s `  M
) y ) )  =  ( ( F `
 ( x ( .s `  M ) y ) )  .+  ( G `  ( x ( .s `  M
) y ) ) ) )
5849, 51, 53, 56, 57syl22anc 1183 . . 3  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o F 
.+  G ) `  ( x ( .s
`  M ) y ) )  =  ( ( F `  (
x ( .s `  M ) y ) )  .+  ( G `
 ( x ( .s `  M ) y ) ) ) )
59 fnfvof 6132 . . . . 5  |-  ( ( ( F  Fn  ( Base `  M )  /\  G  Fn  ( Base `  M ) )  /\  ( ( Base `  M
)  e.  _V  /\  y  e.  ( Base `  M ) ) )  ->  ( ( F  o F  .+  G
) `  y )  =  ( ( F `
 y )  .+  ( G `  y ) ) )
6049, 51, 53, 24, 59syl22anc 1183 . . . 4  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o F 
.+  G ) `  y )  =  ( ( F `  y
)  .+  ( G `  y ) ) )
6160oveq2d 5916 . . 3  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( .s `  N ) ( ( F  o F  .+  G ) `  y
) )  =  ( x ( .s `  N ) ( ( F `  y ) 
.+  ( G `  y ) ) ) )
6247, 58, 613eqtr4d 2358 . 2  |-  ( ( ( F  e.  ( M LMHom  N )  /\  G  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o F 
.+  G ) `  ( x ( .s
`  M ) y ) )  =  ( x ( .s `  N ) ( ( F  o F  .+  G ) `  y
) ) )
631, 2, 3, 4, 5, 6, 8, 10, 12, 21, 62islmhmd 15845 1  |-  ( ( F  e.  ( M LMHom 
N )  /\  G  e.  ( M LMHom  N ) )  ->  ( F  o F  .+  G )  e.  ( M LMHom  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701   _Vcvv 2822    Fn wfn 5287   -->wf 5288   ` cfv 5292  (class class class)co 5900    o Fcof 6118   Basecbs 13195   +g cplusg 13255  Scalarcsca 13258   .scvsca 13259    GrpHom cghm 14729   Abelcabel 15139   LModclmod 15676   LMHom clmhm 15825
This theorem is referenced by:  nmhmplusg  18318  mendrng  26648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-of 6120  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-ndx 13198  df-slot 13199  df-base 13200  df-sets 13201  df-plusg 13268  df-0g 13453  df-mnd 14416  df-grp 14538  df-minusg 14539  df-ghm 14730  df-cmn 15140  df-abl 15141  df-mgp 15375  df-rng 15389  df-ur 15391  df-lmod 15678  df-lmhm 15828
  Copyright terms: Public domain W3C validator