MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmvsca Structured version   Unicode version

Theorem lmhmvsca 16111
Description: The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmhmvsca.v  |-  V  =  ( Base `  M
)
lmhmvsca.s  |-  .x.  =  ( .s `  N )
lmhmvsca.j  |-  J  =  (Scalar `  N )
lmhmvsca.k  |-  K  =  ( Base `  J
)
Assertion
Ref Expression
lmhmvsca  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( ( V  X.  { A }
)  o F  .x.  F )  e.  ( M LMHom  N ) )

Proof of Theorem lmhmvsca
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmvsca.v . 2  |-  V  =  ( Base `  M
)
2 eqid 2435 . 2  |-  ( .s
`  M )  =  ( .s `  M
)
3 lmhmvsca.s . 2  |-  .x.  =  ( .s `  N )
4 eqid 2435 . 2  |-  (Scalar `  M )  =  (Scalar `  M )
5 lmhmvsca.j . 2  |-  J  =  (Scalar `  N )
6 eqid 2435 . 2  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
7 lmhmlmod1 16099 . . 3  |-  ( F  e.  ( M LMHom  N
)  ->  M  e.  LMod )
873ad2ant3 980 . 2  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  M  e.  LMod )
9 lmhmlmod2 16098 . . 3  |-  ( F  e.  ( M LMHom  N
)  ->  N  e.  LMod )
1093ad2ant3 980 . 2  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  N  e.  LMod )
114, 5lmhmsca 16096 . . 3  |-  ( F  e.  ( M LMHom  N
)  ->  J  =  (Scalar `  M ) )
12113ad2ant3 980 . 2  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  J  =  (Scalar `  M ) )
13 fvex 5734 . . . . . . 7  |-  ( Base `  M )  e.  _V
141, 13eqeltri 2505 . . . . . 6  |-  V  e. 
_V
1514a1i 11 . . . . 5  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  V  e.  _V )
16 simpl2 961 . . . . 5  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  v  e.  V )  ->  A  e.  K )
17 eqid 2435 . . . . . . . 8  |-  ( Base `  N )  =  (
Base `  N )
181, 17lmhmf 16100 . . . . . . 7  |-  ( F  e.  ( M LMHom  N
)  ->  F : V
--> ( Base `  N
) )
19183ad2ant3 980 . . . . . 6  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  F : V
--> ( Base `  N
) )
2019ffvelrnda 5862 . . . . 5  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  v  e.  V )  ->  ( F `  v )  e.  ( Base `  N
) )
21 fconstmpt 4913 . . . . . 6  |-  ( V  X.  { A }
)  =  ( v  e.  V  |->  A )
2221a1i 11 . . . . 5  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( V  X.  { A } )  =  ( v  e.  V  |->  A ) )
2319feqmptd 5771 . . . . 5  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  F  =  ( v  e.  V  |->  ( F `  v
) ) )
2415, 16, 20, 22, 23offval2 6314 . . . 4  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( ( V  X.  { A }
)  o F  .x.  F )  =  ( v  e.  V  |->  ( A  .x.  ( F `
 v ) ) ) )
25 eqidd 2436 . . . . 5  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( u  e.  ( Base `  N
)  |->  ( A  .x.  u ) )  =  ( u  e.  (
Base `  N )  |->  ( A  .x.  u
) ) )
26 oveq2 6081 . . . . 5  |-  ( u  =  ( F `  v )  ->  ( A  .x.  u )  =  ( A  .x.  ( F `  v )
) )
2720, 23, 25, 26fmptco 5893 . . . 4  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( (
u  e.  ( Base `  N )  |->  ( A 
.x.  u ) )  o.  F )  =  ( v  e.  V  |->  ( A  .x.  ( F `  v )
) ) )
2824, 27eqtr4d 2470 . . 3  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( ( V  X.  { A }
)  o F  .x.  F )  =  ( ( u  e.  (
Base `  N )  |->  ( A  .x.  u
) )  o.  F
) )
29 simp2 958 . . . . 5  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  A  e.  K )
30 lmhmvsca.k . . . . . 6  |-  K  =  ( Base `  J
)
3117, 5, 3, 30lmodvsghm 15995 . . . . 5  |-  ( ( N  e.  LMod  /\  A  e.  K )  ->  (
u  e.  ( Base `  N )  |->  ( A 
.x.  u ) )  e.  ( N  GrpHom  N ) )
3210, 29, 31syl2anc 643 . . . 4  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( u  e.  ( Base `  N
)  |->  ( A  .x.  u ) )  e.  ( N  GrpHom  N ) )
33 lmghm 16097 . . . . 5  |-  ( F  e.  ( M LMHom  N
)  ->  F  e.  ( M  GrpHom  N ) )
34333ad2ant3 980 . . . 4  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  F  e.  ( M  GrpHom  N ) )
35 ghmco 15015 . . . 4  |-  ( ( ( u  e.  (
Base `  N )  |->  ( A  .x.  u
) )  e.  ( N  GrpHom  N )  /\  F  e.  ( M  GrpHom  N ) )  -> 
( ( u  e.  ( Base `  N
)  |->  ( A  .x.  u ) )  o.  F )  e.  ( M  GrpHom  N ) )
3632, 34, 35syl2anc 643 . . 3  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( (
u  e.  ( Base `  N )  |->  ( A 
.x.  u ) )  o.  F )  e.  ( M  GrpHom  N ) )
3728, 36eqeltrd 2509 . 2  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( ( V  X.  { A }
)  o F  .x.  F )  e.  ( M  GrpHom  N ) )
38 simpl1 960 . . . . . 6  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  ->  J  e.  CRing )
39 simpl2 961 . . . . . 6  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  ->  A  e.  K )
40 simprl 733 . . . . . . 7  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  ->  x  e.  ( Base `  (Scalar `  M )
) )
4112fveq2d 5724 . . . . . . . . 9  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( Base `  J )  =  (
Base `  (Scalar `  M
) ) )
4230, 41syl5eq 2479 . . . . . . . 8  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  K  =  ( Base `  (Scalar `  M
) ) )
4342adantr 452 . . . . . . 7  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  ->  K  =  ( Base `  (Scalar `  M )
) )
4440, 43eleqtrrd 2512 . . . . . 6  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  ->  x  e.  K )
45 eqid 2435 . . . . . . 7  |-  ( .r
`  J )  =  ( .r `  J
)
4630, 45crngcom 15668 . . . . . 6  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  x  e.  K )  ->  ( A ( .r `  J ) x )  =  ( x ( .r `  J ) A ) )
4738, 39, 44, 46syl3anc 1184 . . . . 5  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( A ( .r
`  J ) x )  =  ( x ( .r `  J
) A ) )
4847oveq1d 6088 . . . 4  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( ( A ( .r `  J ) x )  .x.  ( F `  y )
)  =  ( ( x ( .r `  J ) A ) 
.x.  ( F `  y ) ) )
4910adantr 452 . . . . 5  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  ->  N  e.  LMod )
5019adantr 452 . . . . . 6  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  ->  F : V --> ( Base `  N ) )
51 simprr 734 . . . . . 6  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
y  e.  V )
5250, 51ffvelrnd 5863 . . . . 5  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( F `  y
)  e.  ( Base `  N ) )
5317, 5, 3, 30, 45lmodvsass 15965 . . . . 5  |-  ( ( N  e.  LMod  /\  ( A  e.  K  /\  x  e.  K  /\  ( F `  y )  e.  ( Base `  N
) ) )  -> 
( ( A ( .r `  J ) x )  .x.  ( F `  y )
)  =  ( A 
.x.  ( x  .x.  ( F `  y ) ) ) )
5449, 39, 44, 52, 53syl13anc 1186 . . . 4  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( ( A ( .r `  J ) x )  .x.  ( F `  y )
)  =  ( A 
.x.  ( x  .x.  ( F `  y ) ) ) )
5517, 5, 3, 30, 45lmodvsass 15965 . . . . 5  |-  ( ( N  e.  LMod  /\  (
x  e.  K  /\  A  e.  K  /\  ( F `  y )  e.  ( Base `  N
) ) )  -> 
( ( x ( .r `  J ) A )  .x.  ( F `  y )
)  =  ( x 
.x.  ( A  .x.  ( F `  y ) ) ) )
5649, 44, 39, 52, 55syl13anc 1186 . . . 4  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( ( x ( .r `  J ) A )  .x.  ( F `  y )
)  =  ( x 
.x.  ( A  .x.  ( F `  y ) ) ) )
5748, 54, 563eqtr3d 2475 . . 3  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( A  .x.  (
x  .x.  ( F `  y ) ) )  =  ( x  .x.  ( A  .x.  ( F `
 y ) ) ) )
581, 4, 2, 6lmodvscl 15957 . . . . . 6  |-  ( ( M  e.  LMod  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  V )  ->  ( x ( .s
`  M ) y )  e.  V )
59583expb 1154 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( x ( .s
`  M ) y )  e.  V )
608, 59sylan 458 . . . 4  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( x ( .s
`  M ) y )  e.  V )
6114a1i 11 . . . . 5  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  ->  V  e.  _V )
62 ffn 5583 . . . . . . 7  |-  ( F : V --> ( Base `  N )  ->  F  Fn  V )
6319, 62syl 16 . . . . . 6  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  F  Fn  V )
6463adantr 452 . . . . 5  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  ->  F  Fn  V )
654, 6, 1, 2, 3lmhmlin 16101 . . . . . . . 8  |-  ( ( F  e.  ( M LMHom 
N )  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  V )  ->  ( F `  (
x ( .s `  M ) y ) )  =  ( x 
.x.  ( F `  y ) ) )
66653expb 1154 . . . . . . 7  |-  ( ( F  e.  ( M LMHom 
N )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( F `  (
x ( .s `  M ) y ) )  =  ( x 
.x.  ( F `  y ) ) )
67663ad2antl3 1121 . . . . . 6  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( F `  (
x ( .s `  M ) y ) )  =  ( x 
.x.  ( F `  y ) ) )
6867adantr 452 . . . . 5  |-  ( ( ( ( J  e. 
CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  ( x  e.  ( Base `  (Scalar `  M
) )  /\  y  e.  V ) )  /\  ( x ( .s
`  M ) y )  e.  V )  ->  ( F `  ( x ( .s
`  M ) y ) )  =  ( x  .x.  ( F `
 y ) ) )
6961, 39, 64, 68ofc1 6319 . . . 4  |-  ( ( ( ( J  e. 
CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  ( x  e.  ( Base `  (Scalar `  M
) )  /\  y  e.  V ) )  /\  ( x ( .s
`  M ) y )  e.  V )  ->  ( ( ( V  X.  { A } )  o F 
.x.  F ) `  ( x ( .s
`  M ) y ) )  =  ( A  .x.  ( x 
.x.  ( F `  y ) ) ) )
7060, 69mpdan 650 . . 3  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( ( ( V  X.  { A }
)  o F  .x.  F ) `  (
x ( .s `  M ) y ) )  =  ( A 
.x.  ( x  .x.  ( F `  y ) ) ) )
71 eqidd 2436 . . . . . 6  |-  ( ( ( ( J  e. 
CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  ( x  e.  ( Base `  (Scalar `  M
) )  /\  y  e.  V ) )  /\  y  e.  V )  ->  ( F `  y
)  =  ( F `
 y ) )
7261, 39, 64, 71ofc1 6319 . . . . 5  |-  ( ( ( ( J  e. 
CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  ( x  e.  ( Base `  (Scalar `  M
) )  /\  y  e.  V ) )  /\  y  e.  V )  ->  ( ( ( V  X.  { A }
)  o F  .x.  F ) `  y
)  =  ( A 
.x.  ( F `  y ) ) )
7351, 72mpdan 650 . . . 4  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( ( ( V  X.  { A }
)  o F  .x.  F ) `  y
)  =  ( A 
.x.  ( F `  y ) ) )
7473oveq2d 6089 . . 3  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( x  .x.  (
( ( V  X.  { A } )  o F  .x.  F ) `
 y ) )  =  ( x  .x.  ( A  .x.  ( F `
 y ) ) ) )
7557, 70, 743eqtr4d 2477 . 2  |-  ( ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  V ) )  -> 
( ( ( V  X.  { A }
)  o F  .x.  F ) `  (
x ( .s `  M ) y ) )  =  ( x 
.x.  ( ( ( V  X.  { A } )  o F 
.x.  F ) `  y ) ) )
761, 2, 3, 4, 5, 6, 8, 10, 12, 37, 75islmhmd 16105 1  |-  ( ( J  e.  CRing  /\  A  e.  K  /\  F  e.  ( M LMHom  N ) )  ->  ( ( V  X.  { A }
)  o F  .x.  F )  e.  ( M LMHom  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2948   {csn 3806    e. cmpt 4258    X. cxp 4868    o. ccom 4874    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073    o Fcof 6295   Basecbs 13459   .rcmulr 13520  Scalarcsca 13522   .scvsca 13523    GrpHom cghm 14993   CRingccrg 15651   LModclmod 15940   LMHom clmhm 16085
This theorem is referenced by:  mendlmod  27433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-nn 9991  df-2 10048  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-plusg 13532  df-0g 13717  df-mnd 14680  df-mhm 14728  df-grp 14802  df-ghm 14994  df-cmn 15404  df-mgp 15639  df-cring 15654  df-lmod 15942  df-lmhm 16088
  Copyright terms: Public domain W3C validator