MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr2 Unicode version

Theorem lmmbr2 18685
Description: Express the binary relation "sequence  F converges to point  P " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC  X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 16959. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2  |-  J  =  ( MetOpen `  D )
lmmbr.3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
Assertion
Ref Expression
lmmbr2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    P, j, k, x   
j, X, k, x   
x, J    ph, j, k, x
Allowed substitution hints:    J( j, k)

Proof of Theorem lmmbr2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lmmbr.2 . . 3  |-  J  =  ( MetOpen `  D )
2 lmmbr.3 . . 3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
31, 2lmmbr 18684 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) ) )
4 df-3an 936 . . . 4  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) )
5 uzf 10233 . . . . . . . . . 10  |-  ZZ>= : ZZ --> ~P ZZ
6 ffn 5389 . . . . . . . . . 10  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7 reseq2 4950 . . . . . . . . . . . 12  |-  ( y  =  ( ZZ>= `  j
)  ->  ( F  |`  y )  =  ( F  |`  ( ZZ>= `  j ) ) )
8 id 19 . . . . . . . . . . . 12  |-  ( y  =  ( ZZ>= `  j
)  ->  y  =  ( ZZ>= `  j )
)
97, 8feq12d 5381 . . . . . . . . . . 11  |-  ( y  =  ( ZZ>= `  j
)  ->  ( ( F  |`  y ) : y --> ( P (
ball `  D )
x )  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) ) )
109rexrn 5667 . . . . . . . . . 10  |-  ( ZZ>=  Fn  ZZ  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) ) )
115, 6, 10mp2b 9 . . . . . . . . 9  |-  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) )
12 simp2l 981 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  F  e.  ( X  ^pm  CC ) )
13 elfvdm 5554 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
14133ad2ant1 976 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  X  e.  dom  * Met )
15 cnex 8818 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
16 elpmg 6786 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  dom  * Met  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
1714, 15, 16sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
1812, 17mpbid 201 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
1918simpld 445 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  Fun  F )
20 ffvresb 5690 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( P ( ball `  D
) x ) ) ) )
2119, 20syl 15 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( P ( ball `  D
) x ) ) ) )
22 rpxr 10361 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  x  e. 
RR* )
23 elbl 17949 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  x  e.  RR* )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  ( P D ( F `  k ) )  < 
x ) ) )
2422, 23syl3an3 1217 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  ( P D ( F `  k ) )  < 
x ) ) )
25 xmetsym 17912 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  ( F `  k
)  e.  X )  ->  ( P D ( F `  k
) )  =  ( ( F `  k
) D P ) )
2625breq1d 4033 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( P D ( F `  k ) )  < 
x  <->  ( ( F `
 k ) D P )  <  x
) )
27263expa 1151 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  ( F `  k )  e.  X )  ->  (
( P D ( F `  k ) )  <  x  <->  ( ( F `  k ) D P )  <  x
) )
2827pm5.32da 622 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  ( (
( F `  k
)  e.  X  /\  ( P D ( F `
 k ) )  <  x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
29283adant3 975 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( ( F `
 k )  e.  X  /\  ( P D ( F `  k ) )  < 
x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3024, 29bitrd 244 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
31303adant2l 1176 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D ) x )  <-> 
( ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3231anbi2d 684 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  ( P ( ball `  D
) x ) )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D P )  < 
x ) ) ) )
33 3anass 938 . . . . . . . . . . . . 13  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D P )  < 
x ) ) )
3432, 33syl6bbr 254 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  ( P ( ball `  D
) x ) )  <-> 
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3534ralbidv 2563 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( P (
ball `  D )
x ) )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3621, 35bitrd 244 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3736rexbidv 2564 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3811, 37syl5bb 248 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
39383expa 1151 . . . . . . 7  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  /\  x  e.  RR+ )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4039ralbidva 2559 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4140pm5.32da 622 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  (
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
422, 41syl 15 . . . 4  |-  ( ph  ->  ( ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
434, 42syl5bb 248 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  <-> 
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
44 df-3an 936 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4543, 44syl6bbr 254 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
463, 45bitrd 244 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625   class class class wbr 4023    X. cxp 4687   dom cdm 4689   ran crn 4690    |` cres 4691   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^pm cpm 6773   CCcc 8735   RR*cxr 8866    < clt 8867   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   * Metcxmt 16369   ballcbl 16371   MetOpencmopn 16372   ~~> tclm 16956
This theorem is referenced by:  lmmbr3  18686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-topgen 13344  df-xmet 16373  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-lm 16959
  Copyright terms: Public domain W3C validator