MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0cl Structured version   Unicode version

Theorem lmod0cl 15976
Description: The ring zero in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0cl.f  |-  F  =  (Scalar `  W )
lmod0cl.k  |-  K  =  ( Base `  F
)
lmod0cl.z  |-  .0.  =  ( 0g `  F )
Assertion
Ref Expression
lmod0cl  |-  ( W  e.  LMod  ->  .0.  e.  K )

Proof of Theorem lmod0cl
StepHypRef Expression
1 lmod0cl.f . . 3  |-  F  =  (Scalar `  W )
21lmodrng 15958 . 2  |-  ( W  e.  LMod  ->  F  e. 
Ring )
3 lmod0cl.k . . 3  |-  K  =  ( Base `  F
)
4 lmod0cl.z . . 3  |-  .0.  =  ( 0g `  F )
53, 4rng0cl 15685 . 2  |-  ( F  e.  Ring  ->  .0.  e.  K )
62, 5syl 16 1  |-  ( W  e.  LMod  ->  .0.  e.  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   ` cfv 5454   Basecbs 13469  Scalarcsca 13532   0gc0g 13723   Ringcrg 15660   LModclmod 15950
This theorem is referenced by:  lss1d  16039  lspsolvlem  16214  iporthcom  16866  lfl0f  29867  lfl1dim  29919  lfl1dim2N  29920  lkrss2N  29967  baerlem5blem1  32507  hdmap14lem2a  32668  hdmap14lem4a  32672  hdmap14lem6  32674  hgmapval0  32693  hgmapeq0  32705
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-riota 6549  df-0g 13727  df-mnd 14690  df-grp 14812  df-rng 15663  df-lmod 15952
  Copyright terms: Public domain W3C validator