MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodprop2d Unicode version

Theorem lmodprop2d 15687
Description: If two structures have the same components (properties), one is a left module iff the other one is. This version of lmodpropd 15688 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodprop2d.b1  |-  ( ph  ->  B  =  ( Base `  K ) )
lmodprop2d.b2  |-  ( ph  ->  B  =  ( Base `  L ) )
lmodprop2d.f  |-  F  =  (Scalar `  K )
lmodprop2d.g  |-  G  =  (Scalar `  L )
lmodprop2d.p1  |-  ( ph  ->  P  =  ( Base `  F ) )
lmodprop2d.p2  |-  ( ph  ->  P  =  ( Base `  G ) )
lmodprop2d.1  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lmodprop2d.2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( +g  `  F ) y )  =  ( x ( +g  `  G ) y ) )
lmodprop2d.3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( .r
`  F ) y )  =  ( x ( .r `  G
) y ) )
lmodprop2d.4  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
Assertion
Ref Expression
lmodprop2d  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Distinct variable groups:    x, y, B    x, F, y    ph, x, y    x, G, y    x, K, y    x, L, y   
x, P, y

Proof of Theorem lmodprop2d
Dummy variables  r 
q  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodgrp 15634 . . . 4  |-  ( K  e.  LMod  ->  K  e. 
Grp )
21a1i 10 . . 3  |-  ( ph  ->  ( K  e.  LMod  ->  K  e.  Grp )
)
3 eqid 2283 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
4 eqid 2283 . . . . . 6  |-  ( +g  `  K )  =  ( +g  `  K )
5 eqid 2283 . . . . . 6  |-  ( .s
`  K )  =  ( .s `  K
)
6 lmodprop2d.f . . . . . 6  |-  F  =  (Scalar `  K )
7 eqid 2283 . . . . . 6  |-  ( Base `  F )  =  (
Base `  F )
8 eqid 2283 . . . . . 6  |-  ( +g  `  F )  =  ( +g  `  F )
9 eqid 2283 . . . . . 6  |-  ( .r
`  F )  =  ( .r `  F
)
10 eqid 2283 . . . . . 6  |-  ( 1r
`  F )  =  ( 1r `  F
)
113, 4, 5, 6, 7, 8, 9, 10islmod 15631 . . . . 5  |-  ( K  e.  LMod  <->  ( K  e. 
Grp  /\  F  e.  Ring  /\  A. q  e.  (
Base `  F ) A. r  e.  ( Base `  F ) A. z  e.  ( Base `  K ) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) ) )
1211simp2bi 971 . . . 4  |-  ( K  e.  LMod  ->  F  e. 
Ring )
1312a1i 10 . . 3  |-  ( ph  ->  ( K  e.  LMod  ->  F  e.  Ring ) )
14 simplr 731 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  K  e.  LMod )
15 simprl 732 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  x  e.  P )
16 lmodprop2d.p1 . . . . . . . . 9  |-  ( ph  ->  P  =  ( Base `  F ) )
1716ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  P  =  ( Base `  F )
)
1815, 17eleqtrd 2359 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  x  e.  ( Base `  F )
)
19 simprr 733 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  y  e.  B )
20 lmodprop2d.b1 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  K ) )
2120ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  B  =  ( Base `  K )
)
2219, 21eleqtrd 2359 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  y  e.  ( Base `  K )
)
233, 6, 5, 7lmodvscl 15644 . . . . . . 7  |-  ( ( K  e.  LMod  /\  x  e.  ( Base `  F
)  /\  y  e.  ( Base `  K )
)  ->  ( x
( .s `  K
) y )  e.  ( Base `  K
) )
2414, 18, 22, 23syl3anc 1182 . . . . . 6  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( x
( .s `  K
) y )  e.  ( Base `  K
) )
2524, 21eleqtrrd 2360 . . . . 5  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( x
( .s `  K
) y )  e.  B )
2625ralrimivva 2635 . . . 4  |-  ( (
ph  /\  K  e.  LMod )  ->  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )
2726ex 423 . . 3  |-  ( ph  ->  ( K  e.  LMod  ->  A. x  e.  P  A. y  e.  B  ( x ( .s
`  K ) y )  e.  B ) )
282, 13, 273jcad 1133 . 2  |-  ( ph  ->  ( K  e.  LMod  -> 
( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  (
x ( .s `  K ) y )  e.  B ) ) )
29 lmodgrp 15634 . . . 4  |-  ( L  e.  LMod  ->  L  e. 
Grp )
30 lmodprop2d.b2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
31 lmodprop2d.1 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
3220, 30, 31grppropd 14500 . . . 4  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
3329, 32syl5ibr 212 . . 3  |-  ( ph  ->  ( L  e.  LMod  ->  K  e.  Grp )
)
34 eqid 2283 . . . . . 6  |-  ( Base `  L )  =  (
Base `  L )
35 eqid 2283 . . . . . 6  |-  ( +g  `  L )  =  ( +g  `  L )
36 eqid 2283 . . . . . 6  |-  ( .s
`  L )  =  ( .s `  L
)
37 lmodprop2d.g . . . . . 6  |-  G  =  (Scalar `  L )
38 eqid 2283 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
39 eqid 2283 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
40 eqid 2283 . . . . . 6  |-  ( .r
`  G )  =  ( .r `  G
)
41 eqid 2283 . . . . . 6  |-  ( 1r
`  G )  =  ( 1r `  G
)
4234, 35, 36, 37, 38, 39, 40, 41islmod 15631 . . . . 5  |-  ( L  e.  LMod  <->  ( L  e. 
Grp  /\  G  e.  Ring  /\  A. q  e.  (
Base `  G ) A. r  e.  ( Base `  G ) A. z  e.  ( Base `  L ) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
4342simp2bi 971 . . . 4  |-  ( L  e.  LMod  ->  G  e. 
Ring )
44 lmodprop2d.p2 . . . . 5  |-  ( ph  ->  P  =  ( Base `  G ) )
45 lmodprop2d.2 . . . . 5  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( +g  `  F ) y )  =  ( x ( +g  `  G ) y ) )
46 lmodprop2d.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( .r
`  F ) y )  =  ( x ( .r `  G
) y ) )
4716, 44, 45, 46rngpropd 15372 . . . 4  |-  ( ph  ->  ( F  e.  Ring  <->  G  e.  Ring ) )
4843, 47syl5ibr 212 . . 3  |-  ( ph  ->  ( L  e.  LMod  ->  F  e.  Ring ) )
49 simplr 731 . . . . . . 7  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  L  e.  LMod )
50 simprl 732 . . . . . . . 8  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  x  e.  P )
5144ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  P  =  ( Base `  G )
)
5250, 51eleqtrd 2359 . . . . . . 7  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  x  e.  ( Base `  G )
)
53 simprr 733 . . . . . . . 8  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  y  e.  B )
5430ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  B  =  ( Base `  L )
)
5553, 54eleqtrd 2359 . . . . . . 7  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  y  e.  ( Base `  L )
)
5634, 37, 36, 38lmodvscl 15644 . . . . . . 7  |-  ( ( L  e.  LMod  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  L )
)  ->  ( x
( .s `  L
) y )  e.  ( Base `  L
) )
5749, 52, 55, 56syl3anc 1182 . . . . . 6  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( x
( .s `  L
) y )  e.  ( Base `  L
) )
58 lmodprop2d.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
5958adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( x
( .s `  K
) y )  =  ( x ( .s
`  L ) y ) )
6059, 54eleq12d 2351 . . . . . 6  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( (
x ( .s `  K ) y )  e.  B  <->  ( x
( .s `  L
) y )  e.  ( Base `  L
) ) )
6157, 60mpbird 223 . . . . 5  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( x
( .s `  K
) y )  e.  B )
6261ralrimivva 2635 . . . 4  |-  ( (
ph  /\  L  e.  LMod )  ->  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )
6362ex 423 . . 3  |-  ( ph  ->  ( L  e.  LMod  ->  A. x  e.  P  A. y  e.  B  ( x ( .s
`  K ) y )  e.  B ) )
6433, 48, 633jcad 1133 . 2  |-  ( ph  ->  ( L  e.  LMod  -> 
( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  (
x ( .s `  K ) y )  e.  B ) ) )
6532adantr 451 . . . . 5  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
6647adantr 451 . . . . 5  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( F  e.  Ring  <->  G  e.  Ring ) )
67 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  ph )
68 simprlr 739 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  r  e.  P )
69 simprrr 741 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  w  e.  B )
7058proplem 13592 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( r  e.  P  /\  w  e.  B ) )  -> 
( r ( .s
`  K ) w )  =  ( r ( .s `  L
) w ) )
7167, 68, 69, 70syl12anc 1180 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) w )  =  ( r ( .s `  L ) w ) )
7271eleq1d 2349 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( r ( .s
`  K ) w )  e.  B  <->  ( r
( .s `  L
) w )  e.  B ) )
73 simplr1 997 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  K  e.  Grp )
7420ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  B  =  ( Base `  K
) )
7569, 74eleqtrd 2359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  w  e.  ( Base `  K
) )
76 simprrl 740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  z  e.  B )
7776, 74eleqtrd 2359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  z  e.  ( Base `  K
) )
783, 4grpcl 14495 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Grp  /\  w  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  (
w ( +g  `  K
) z )  e.  ( Base `  K
) )
7973, 75, 77, 78syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
w ( +g  `  K
) z )  e.  ( Base `  K
) )
8079, 74eleqtrrd 2360 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
w ( +g  `  K
) z )  e.  B )
8158proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  P  /\  (
w ( +g  `  K
) z )  e.  B ) )  -> 
( r ( .s
`  K ) ( w ( +g  `  K
) z ) )  =  ( r ( .s `  L ) ( w ( +g  `  K ) z ) ) )
8267, 68, 80, 81syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) ( w ( +g  `  K
) z ) )  =  ( r ( .s `  L ) ( w ( +g  `  K ) z ) ) )
8331proplem 13592 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( w  e.  B  /\  z  e.  B ) )  -> 
( w ( +g  `  K ) z )  =  ( w ( +g  `  L ) z ) )
8467, 69, 76, 83syl12anc 1180 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
w ( +g  `  K
) z )  =  ( w ( +g  `  L ) z ) )
8584oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  L ) ( w ( +g  `  K
) z ) )  =  ( r ( .s `  L ) ( w ( +g  `  L ) z ) ) )
8682, 85eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) ( w ( +g  `  K
) z ) )  =  ( r ( .s `  L ) ( w ( +g  `  L ) z ) ) )
87 simplr3 999 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )
88 proplem2 13591 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  P  /\  w  e.  B
)  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )  ->  (
r ( .s `  K ) w )  e.  B )
8968, 69, 87, 88syl21anc 1181 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) w )  e.  B )
90 proplem2 13591 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  P  /\  z  e.  B
)  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )  ->  (
r ( .s `  K ) z )  e.  B )
9168, 76, 87, 90syl21anc 1181 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) z )  e.  B )
9231proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
r ( .s `  K ) w )  e.  B  /\  (
r ( .s `  K ) z )  e.  B ) )  ->  ( ( r ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) z ) )  =  ( ( r ( .s
`  K ) w ) ( +g  `  L
) ( r ( .s `  K ) z ) ) )
9367, 89, 91, 92syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( r ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  L ) ( r ( .s `  K
) z ) ) )
9458proplem 13592 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( r  e.  P  /\  z  e.  B ) )  -> 
( r ( .s
`  K ) z )  =  ( r ( .s `  L
) z ) )
9567, 68, 76, 94syl12anc 1180 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) z )  =  ( r ( .s `  L ) z ) )
9671, 95oveq12d 5876 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( r ( .s
`  K ) w ) ( +g  `  L
) ( r ( .s `  K ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) ) )
9793, 96eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( r ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) ) )
9886, 97eqeq12d 2297 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( r ( .s
`  K ) ( w ( +g  `  K
) z ) )  =  ( ( r ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) z ) )  <->  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) ) ) )
99 simplr2 998 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  F  e.  Ring )
100 simprll 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  q  e.  P )
10116ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  P  =  ( Base `  F
) )
102100, 101eleqtrd 2359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  q  e.  ( Base `  F
) )
10368, 101eleqtrd 2359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  r  e.  ( Base `  F
) )
1047, 8rngacl 15368 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  Ring  /\  q  e.  ( Base `  F
)  /\  r  e.  ( Base `  F )
)  ->  ( q
( +g  `  F ) r )  e.  (
Base `  F )
)
10599, 102, 103, 104syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( +g  `  F
) r )  e.  ( Base `  F
) )
106105, 101eleqtrrd 2360 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( +g  `  F
) r )  e.  P )
10758proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
q ( +g  `  F
) r )  e.  P  /\  w  e.  B ) )  -> 
( ( q ( +g  `  F ) r ) ( .s
`  K ) w )  =  ( ( q ( +g  `  F
) r ) ( .s `  L ) w ) )
10867, 106, 69, 107syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( +g  `  F ) r ) ( .s `  K
) w )  =  ( ( q ( +g  `  F ) r ) ( .s
`  L ) w ) )
10945proplem 13592 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( q  e.  P  /\  r  e.  P ) )  -> 
( q ( +g  `  F ) r )  =  ( q ( +g  `  G ) r ) )
110109ad2ant2r 727 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( +g  `  F
) r )  =  ( q ( +g  `  G ) r ) )
111110oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( +g  `  F ) r ) ( .s `  L
) w )  =  ( ( q ( +g  `  G ) r ) ( .s
`  L ) w ) )
112108, 111eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( +g  `  F ) r ) ( .s `  K
) w )  =  ( ( q ( +g  `  G ) r ) ( .s
`  L ) w ) )
113 proplem2 13591 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e.  P  /\  w  e.  B
)  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )  ->  (
q ( .s `  K ) w )  e.  B )
114100, 69, 87, 113syl21anc 1181 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .s `  K ) w )  e.  B )
11531proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
q ( .s `  K ) w )  e.  B  /\  (
r ( .s `  K ) w )  e.  B ) )  ->  ( ( q ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) w ) )  =  ( ( q ( .s
`  K ) w ) ( +g  `  L
) ( r ( .s `  K ) w ) ) )
11667, 114, 89, 115syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) )  =  ( ( q ( .s `  K ) w ) ( +g  `  L ) ( r ( .s `  K
) w ) ) )
11758proplem 13592 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( q  e.  P  /\  w  e.  B ) )  -> 
( q ( .s
`  K ) w )  =  ( q ( .s `  L
) w ) )
11867, 100, 69, 117syl12anc 1180 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .s `  K ) w )  =  ( q ( .s `  L ) w ) )
119118, 71oveq12d 5876 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .s
`  K ) w ) ( +g  `  L
) ( r ( .s `  K ) w ) )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )
120116, 119eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )
121112, 120eqeq12d 2297 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( q ( +g  `  F ) r ) ( .s
`  K ) w )  =  ( ( q ( .s `  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) )  <->  ( (
q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) ) )
12272, 98, 1213anbi123d 1252 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( r ( .s `  K ) w )  e.  B  /\  ( r ( .s
`  K ) ( w ( +g  `  K
) z ) )  =  ( ( r ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) z ) )  /\  (
( q ( +g  `  F ) r ) ( .s `  K
) w )  =  ( ( q ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) w ) ) )  <->  ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) ) ) )
1237, 9rngcl 15354 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  Ring  /\  q  e.  ( Base `  F
)  /\  r  e.  ( Base `  F )
)  ->  ( q
( .r `  F
) r )  e.  ( Base `  F
) )
12499, 102, 103, 123syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .r `  F ) r )  e.  ( Base `  F
) )
125124, 101eleqtrrd 2360 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .r `  F ) r )  e.  P )
12658proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
q ( .r `  F ) r )  e.  P  /\  w  e.  B ) )  -> 
( ( q ( .r `  F ) r ) ( .s
`  K ) w )  =  ( ( q ( .r `  F ) r ) ( .s `  L
) w ) )
12767, 125, 69, 126syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .r
`  F ) r ) ( .s `  K ) w )  =  ( ( q ( .r `  F
) r ) ( .s `  L ) w ) )
12846proplem 13592 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( q  e.  P  /\  r  e.  P ) )  -> 
( q ( .r
`  F ) r )  =  ( q ( .r `  G
) r ) )
129128ad2ant2r 727 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .r `  F ) r )  =  ( q ( .r `  G ) r ) )
130129oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .r
`  F ) r ) ( .s `  L ) w )  =  ( ( q ( .r `  G
) r ) ( .s `  L ) w ) )
131127, 130eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .r
`  F ) r ) ( .s `  K ) w )  =  ( ( q ( .r `  G
) r ) ( .s `  L ) w ) )
13258proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( q  e.  P  /\  (
r ( .s `  K ) w )  e.  B ) )  ->  ( q ( .s `  K ) ( r ( .s
`  K ) w ) )  =  ( q ( .s `  L ) ( r ( .s `  K
) w ) ) )
13367, 100, 89, 132syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .s `  K ) ( r ( .s `  K
) w ) )  =  ( q ( .s `  L ) ( r ( .s
`  K ) w ) ) )
13471oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .s `  L ) ( r ( .s `  K
) w ) )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) ) )
135133, 134eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .s `  K ) ( r ( .s `  K
) w ) )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) ) )
136131, 135eqeq12d 2297 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( q ( .r `  F ) r ) ( .s
`  K ) w )  =  ( q ( .s `  K
) ( r ( .s `  K ) w ) )  <->  ( (
q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) ) ) )
1377, 10rngidcl 15361 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  ( Base `  F
) )
13899, 137syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  ( 1r `  F )  e.  ( Base `  F
) )
139138, 101eleqtrrd 2360 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  ( 1r `  F )  e.  P )
14058proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( 1r `  F )  e.  P  /\  w  e.  B ) )  -> 
( ( 1r `  F ) ( .s
`  K ) w )  =  ( ( 1r `  F ) ( .s `  L
) w ) )
14167, 139, 69, 140syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( 1r `  F
) ( .s `  K ) w )  =  ( ( 1r
`  F ) ( .s `  L ) w ) )
14216, 44, 46rngidpropd 15477 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1r `  F
)  =  ( 1r
`  G ) )
143142ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  ( 1r `  F )  =  ( 1r `  G
) )
144143oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( 1r `  F
) ( .s `  L ) w )  =  ( ( 1r
`  G ) ( .s `  L ) w ) )
145141, 144eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( 1r `  F
) ( .s `  K ) w )  =  ( ( 1r
`  G ) ( .s `  L ) w ) )
146145eqeq1d 2291 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( 1r `  F ) ( .s
`  K ) w )  =  w  <->  ( ( 1r `  G ) ( .s `  L ) w )  =  w ) )
147136, 146anbi12d 691 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( ( q ( .r `  F
) r ) ( .s `  K ) w )  =  ( q ( .s `  K ) ( r ( .s `  K
) w ) )  /\  ( ( 1r
`  F ) ( .s `  K ) w )  =  w )  <->  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) )
148122, 147anbi12d 691 . . . . . . . . 9  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  ( (
( r ( .s
`  L ) w )  e.  B  /\  ( r ( .s
`  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  /\  ( ( ( q ( .r
`  G ) r ) ( .s `  L ) w )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) )  /\  (
( 1r `  G
) ( .s `  L ) w )  =  w ) ) ) )
149148anassrs 629 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  (
x ( .s `  K ) y )  e.  B ) )  /\  ( q  e.  P  /\  r  e.  P ) )  /\  ( z  e.  B  /\  w  e.  B
) )  ->  (
( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  ( (
( r ( .s
`  L ) w )  e.  B  /\  ( r ( .s
`  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  /\  ( ( ( q ( .r
`  G ) r ) ( .s `  L ) w )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) )  /\  (
( 1r `  G
) ( .s `  L ) w )  =  w ) ) ) )
1501492ralbidva 2583 . . . . . . 7  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( q  e.  P  /\  r  e.  P
) )  ->  ( A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. z  e.  B  A. w  e.  B  ( (
( r ( .s
`  L ) w )  e.  B  /\  ( r ( .s
`  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  /\  ( ( ( q ( .r
`  G ) r ) ( .s `  L ) w )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) )  /\  (
( 1r `  G
) ( .s `  L ) w )  =  w ) ) ) )
1511502ralbidva 2583 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. q  e.  P  A. r  e.  P  A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. q  e.  P  A. r  e.  P  A. z  e.  B  A. w  e.  B  ( (
( r ( .s
`  L ) w )  e.  B  /\  ( r ( .s
`  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  /\  ( ( ( q ( .r
`  G ) r ) ( .s `  L ) w )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) )  /\  (
( 1r `  G
) ( .s `  L ) w )  =  w ) ) ) )
15216adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  P  =  ( Base `  F
) )
15320adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  B  =  ( Base `  K
) )
154153eleq2d 2350 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( r ( .s
`  K ) w )  e.  B  <->  ( r
( .s `  K
) w )  e.  ( Base `  K
) ) )
1551543anbi1d 1256 . . . . . . . . . . 11  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( ( r ( .s `  K ) w )  e.  B  /\  ( r ( .s
`  K ) ( w ( +g  `  K
) z ) )  =  ( ( r ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) z ) )  /\  (
( q ( +g  `  F ) r ) ( .s `  K
) w )  =  ( ( q ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) w ) ) )  <->  ( ( r ( .s `  K
) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) ) ) )
156155anbi1d 685 . . . . . . . . . 10  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  ( (
( r ( .s
`  K ) w )  e.  ( Base `  K )  /\  (
r ( .s `  K ) ( w ( +g  `  K
) z ) )  =  ( ( r ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) z ) )  /\  (
( q ( +g  `  F ) r ) ( .s `  K
) w )  =  ( ( q ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) w ) ) )  /\  ( ( ( q ( .r
`  F ) r ) ( .s `  K ) w )  =  ( q ( .s `  K ) ( r ( .s
`  K ) w ) )  /\  (
( 1r `  F
) ( .s `  K ) w )  =  w ) ) ) )
157153, 156raleqbidv 2748 . . . . . . . . 9  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) ) )
158153, 157raleqbidv 2748 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. z  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) ) )
159152, 158raleqbidv 2748 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. r  e.  P  A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. r  e.  ( Base `  F
) A. z  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) ) )
160152, 159raleqbidv 2748 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. q  e.  P  A. r  e.  P  A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. q  e.  ( Base `  F
) A. r  e.  ( Base `  F
) A. z  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) ) )
16144adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  P  =  ( Base `  G
) )
16230adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  B  =  ( Base `  L
) )
163162eleq2d 2350 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( r ( .s
`  L ) w )  e.  B  <->  ( r
( .s `  L
) w )  e.  ( Base `  L
) ) )
1641633anbi1d 1256 . . . . . . . . . . 11  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( ( r ( .s `  L ) w )  e.  B  /\  ( r ( .s
`  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  <->  ( ( r ( .s `  L
) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) ) ) )
165164anbi1d 685 . . . . . . . . . 10  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) )  <->  ( (
( r ( .s
`  L ) w )  e.  ( Base `  L )  /\  (
r ( .s `  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  /\  ( ( ( q ( .r
`  G ) r ) ( .s `  L ) w )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) )  /\  (
( 1r `  G
) ( .s `  L ) w )  =  w ) ) ) )
166162, 165raleqbidv 2748 . . . . . . . . 9  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. w  e.  B  ( ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) )  <->  A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
167162, 166raleqbidv 2748 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) )  <->  A. z  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
168161, 167raleqbidv 2748 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. r  e.  P  A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) )  <->  A. r  e.  ( Base `  G
) A. z  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
169161, 168raleqbidv 2748 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. q  e.  P  A. r  e.  P  A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) )  <->  A. q  e.  ( Base `  G
) A. r  e.  ( Base `  G
) A. z  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
170151, 160, 1693bitr3d 274 . . . . 5  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. q  e.  ( Base `  F ) A. r  e.  ( Base `  F ) A. z  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. q  e.  ( Base `  G
) A. r  e.  ( Base `  G
) A. z  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
17165, 66, 1703anbi123d 1252 . . . 4  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( K  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  ( Base `  F ) A. r  e.  ( Base `  F
) A. z  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) )  <-> 
( L  e.  Grp  /\  G  e.  Ring  /\  A. q  e.  ( Base `  G ) A. r  e.  ( Base `  G
) A. z  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) ) )
172171, 11, 423bitr4g 279 . . 3  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
173172ex 423 . 2  |-  ( ph  ->  ( ( K  e. 
Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s
`  K ) y )  e.  B )  ->  ( K  e. 
LMod 
<->  L  e.  LMod )
) )
17428, 64, 173pm5.21ndd 343 1  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   .rcmulr 13209  Scalarcsca 13211   .scvsca 13212   Grpcgrp 14362   Ringcrg 15337   1rcur 15339   LModclmod 15627
This theorem is referenced by:  lmodpropd  15688  lvecprop2d  15919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-0g 13404  df-mnd 14367  df-grp 14489  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629
  Copyright terms: Public domain W3C validator