MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsn0 Unicode version

Theorem lmodsn0 15656
Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodsn0.f  |-  F  =  (Scalar `  W )
lmodsn0.b  |-  B  =  ( Base `  F
)
Assertion
Ref Expression
lmodsn0  |-  ( W  e.  LMod  ->  B  =/=  (/) )

Proof of Theorem lmodsn0
StepHypRef Expression
1 lmodsn0.f . . 3  |-  F  =  (Scalar `  W )
21lmodfgrp 15652 . 2  |-  ( W  e.  LMod  ->  F  e. 
Grp )
3 lmodsn0.b . . 3  |-  B  =  ( Base `  F
)
43grpbn0 14527 . 2  |-  ( F  e.  Grp  ->  B  =/=  (/) )
52, 4syl 15 1  |-  ( W  e.  LMod  ->  B  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696    =/= wne 2459   (/)c0 3468   ` cfv 5271   Basecbs 13164  Scalarcsca 13227   Grpcgrp 14378   LModclmod 15643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-riota 6320  df-0g 13420  df-mnd 14383  df-grp 14505  df-rng 15356  df-lmod 15645
  Copyright terms: Public domain W3C validator