MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubvs Unicode version

Theorem lmodsubvs 15681
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodsubvs.v  |-  V  =  ( Base `  W
)
lmodsubvs.p  |-  .+  =  ( +g  `  W )
lmodsubvs.m  |-  .-  =  ( -g `  W )
lmodsubvs.t  |-  .x.  =  ( .s `  W )
lmodsubvs.f  |-  F  =  (Scalar `  W )
lmodsubvs.k  |-  K  =  ( Base `  F
)
lmodsubvs.n  |-  N  =  ( inv g `  F )
lmodsubvs.w  |-  ( ph  ->  W  e.  LMod )
lmodsubvs.a  |-  ( ph  ->  A  e.  K )
lmodsubvs.x  |-  ( ph  ->  X  e.  V )
lmodsubvs.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lmodsubvs  |-  ( ph  ->  ( X  .-  ( A  .x.  Y ) )  =  ( X  .+  ( ( N `  A )  .x.  Y
) ) )

Proof of Theorem lmodsubvs
StepHypRef Expression
1 lmodsubvs.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lmodsubvs.x . . 3  |-  ( ph  ->  X  e.  V )
3 lmodsubvs.a . . . 4  |-  ( ph  ->  A  e.  K )
4 lmodsubvs.y . . . 4  |-  ( ph  ->  Y  e.  V )
5 lmodsubvs.v . . . . 5  |-  V  =  ( Base `  W
)
6 lmodsubvs.f . . . . 5  |-  F  =  (Scalar `  W )
7 lmodsubvs.t . . . . 5  |-  .x.  =  ( .s `  W )
8 lmodsubvs.k . . . . 5  |-  K  =  ( Base `  F
)
95, 6, 7, 8lmodvscl 15644 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  Y  e.  V )  ->  ( A  .x.  Y )  e.  V )
101, 3, 4, 9syl3anc 1182 . . 3  |-  ( ph  ->  ( A  .x.  Y
)  e.  V )
11 lmodsubvs.p . . . 4  |-  .+  =  ( +g  `  W )
12 lmodsubvs.m . . . 4  |-  .-  =  ( -g `  W )
13 lmodsubvs.n . . . 4  |-  N  =  ( inv g `  F )
14 eqid 2283 . . . 4  |-  ( 1r
`  F )  =  ( 1r `  F
)
155, 11, 12, 6, 7, 13, 14lmodvsubval2 15680 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  ( A  .x.  Y )  e.  V )  ->  ( X  .-  ( A  .x.  Y ) )  =  ( X  .+  (
( N `  ( 1r `  F ) ) 
.x.  ( A  .x.  Y ) ) ) )
161, 2, 10, 15syl3anc 1182 . 2  |-  ( ph  ->  ( X  .-  ( A  .x.  Y ) )  =  ( X  .+  ( ( N `  ( 1r `  F ) )  .x.  ( A 
.x.  Y ) ) ) )
176lmodrng 15635 . . . . . . . 8  |-  ( W  e.  LMod  ->  F  e. 
Ring )
181, 17syl 15 . . . . . . 7  |-  ( ph  ->  F  e.  Ring )
19 rnggrp 15346 . . . . . . 7  |-  ( F  e.  Ring  ->  F  e. 
Grp )
2018, 19syl 15 . . . . . 6  |-  ( ph  ->  F  e.  Grp )
218, 14rngidcl 15361 . . . . . . 7  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
2218, 21syl 15 . . . . . 6  |-  ( ph  ->  ( 1r `  F
)  e.  K )
238, 13grpinvcl 14527 . . . . . 6  |-  ( ( F  e.  Grp  /\  ( 1r `  F )  e.  K )  -> 
( N `  ( 1r `  F ) )  e.  K )
2420, 22, 23syl2anc 642 . . . . 5  |-  ( ph  ->  ( N `  ( 1r `  F ) )  e.  K )
25 eqid 2283 . . . . . 6  |-  ( .r
`  F )  =  ( .r `  F
)
265, 6, 7, 8, 25lmodvsass 15654 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( N `  ( 1r `  F ) )  e.  K  /\  A  e.  K  /\  Y  e.  V ) )  -> 
( ( ( N `
 ( 1r `  F ) ) ( .r `  F ) A )  .x.  Y
)  =  ( ( N `  ( 1r
`  F ) ) 
.x.  ( A  .x.  Y ) ) )
271, 24, 3, 4, 26syl13anc 1184 . . . 4  |-  ( ph  ->  ( ( ( N `
 ( 1r `  F ) ) ( .r `  F ) A )  .x.  Y
)  =  ( ( N `  ( 1r
`  F ) ) 
.x.  ( A  .x.  Y ) ) )
288, 25, 14, 13, 18, 3rngnegl 15380 . . . . 5  |-  ( ph  ->  ( ( N `  ( 1r `  F ) ) ( .r `  F ) A )  =  ( N `  A ) )
2928oveq1d 5873 . . . 4  |-  ( ph  ->  ( ( ( N `
 ( 1r `  F ) ) ( .r `  F ) A )  .x.  Y
)  =  ( ( N `  A ) 
.x.  Y ) )
3027, 29eqtr3d 2317 . . 3  |-  ( ph  ->  ( ( N `  ( 1r `  F ) )  .x.  ( A 
.x.  Y ) )  =  ( ( N `
 A )  .x.  Y ) )
3130oveq2d 5874 . 2  |-  ( ph  ->  ( X  .+  (
( N `  ( 1r `  F ) ) 
.x.  ( A  .x.  Y ) ) )  =  ( X  .+  ( ( N `  A )  .x.  Y
) ) )
3216, 31eqtrd 2315 1  |-  ( ph  ->  ( X  .-  ( A  .x.  Y ) )  =  ( X  .+  ( ( N `  A )  .x.  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   .rcmulr 13209  Scalarcsca 13211   .scvsca 13212   Grpcgrp 14362   inv gcminusg 14363   -gcsg 14365   Ringcrg 15337   1rcur 15339   LModclmod 15627
This theorem is referenced by:  lspexch  15882  baerlem5alem1  31898  baerlem5blem1  31899
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629
  Copyright terms: Public domain W3C validator