MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsdir Unicode version

Theorem lmodvsdir 15668
Description: Distributive law for scalar product. (ax-hvdistr1 21604 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdir.v  |-  V  =  ( Base `  W
)
lmodvsdir.a  |-  .+  =  ( +g  `  W )
lmodvsdir.f  |-  F  =  (Scalar `  W )
lmodvsdir.s  |-  .x.  =  ( .s `  W )
lmodvsdir.k  |-  K  =  ( Base `  F
)
lmodvsdir.p  |-  .+^  =  ( +g  `  F )
Assertion
Ref Expression
lmodvsdir  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
)  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )

Proof of Theorem lmodvsdir
StepHypRef Expression
1 lmodvsdir.v . . . . . . . 8  |-  V  =  ( Base `  W
)
2 lmodvsdir.a . . . . . . . 8  |-  .+  =  ( +g  `  W )
3 lmodvsdir.s . . . . . . . 8  |-  .x.  =  ( .s `  W )
4 lmodvsdir.f . . . . . . . 8  |-  F  =  (Scalar `  W )
5 lmodvsdir.k . . . . . . . 8  |-  K  =  ( Base `  F
)
6 lmodvsdir.p . . . . . . . 8  |-  .+^  =  ( +g  `  F )
7 eqid 2296 . . . . . . . 8  |-  ( .r
`  F )  =  ( .r `  F
)
8 eqid 2296 . . . . . . . 8  |-  ( 1r
`  F )  =  ( 1r `  F
)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 15648 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( ( R  .x.  X )  e.  V  /\  ( R  .x.  ( X  .+  X ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  X ) )  /\  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )  /\  ( ( ( Q ( .r `  F ) R ) 
.x.  X )  =  ( Q  .x.  ( R  .x.  X ) )  /\  ( ( 1r
`  F )  .x.  X )  =  X ) ) )
109simpld 445 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( R  .x.  X
)  e.  V  /\  ( R  .x.  ( X 
.+  X ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  X ) )  /\  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) ) )
1110simp3d 969 . . . . 5  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( Q  .+^  R ) 
.x.  X )  =  ( ( Q  .x.  X )  .+  ( R  .x.  X ) ) )
12113expa 1151 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K
) )  /\  ( X  e.  V  /\  X  e.  V )
)  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )
1312anabsan2 795 . . 3  |-  ( ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K
) )  /\  X  e.  V )  ->  (
( Q  .+^  R ) 
.x.  X )  =  ( ( Q  .x.  X )  .+  ( R  .x.  X ) ) )
1413exp42 594 . 2  |-  ( W  e.  LMod  ->  ( Q  e.  K  ->  ( R  e.  K  ->  ( X  e.  V  -> 
( ( Q  .+^  R )  .x.  X )  =  ( ( Q 
.x.  X )  .+  ( R  .x.  X ) ) ) ) ) )
15143imp2 1166 1  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
)  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   .rcmulr 13225  Scalarcsca 13227   .scvsca 13228   1rcur 15355   LModclmod 15643
This theorem is referenced by:  lmodvsdi2OLD  15669  lmod0vs  15679  lmodvneg1  15683  lmodcom  15687  lmodsubdir  15699  islss3  15732  lss1d  15736  prdslmodd  15742  lspsolvlem  15911  asclghm  16094  clmvsdir  18602  frlmup1  27353  mendlmod  27604  lshpkrlem4  29925  baerlem3lem1  32519  baerlem5blem1  32521  hgmapadd  32709
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-nul 4165
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-lmod 15645
  Copyright terms: Public domain W3C validator