MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsdir Structured version   Unicode version

Theorem lmodvsdir 15966
Description: Distributive law for scalar product. (ax-hvdistr1 22503 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdir.v  |-  V  =  ( Base `  W
)
lmodvsdir.a  |-  .+  =  ( +g  `  W )
lmodvsdir.f  |-  F  =  (Scalar `  W )
lmodvsdir.s  |-  .x.  =  ( .s `  W )
lmodvsdir.k  |-  K  =  ( Base `  F
)
lmodvsdir.p  |-  .+^  =  ( +g  `  F )
Assertion
Ref Expression
lmodvsdir  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
)  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )

Proof of Theorem lmodvsdir
StepHypRef Expression
1 lmodvsdir.v . . . . . . . 8  |-  V  =  ( Base `  W
)
2 lmodvsdir.a . . . . . . . 8  |-  .+  =  ( +g  `  W )
3 lmodvsdir.s . . . . . . . 8  |-  .x.  =  ( .s `  W )
4 lmodvsdir.f . . . . . . . 8  |-  F  =  (Scalar `  W )
5 lmodvsdir.k . . . . . . . 8  |-  K  =  ( Base `  F
)
6 lmodvsdir.p . . . . . . . 8  |-  .+^  =  ( +g  `  F )
7 eqid 2435 . . . . . . . 8  |-  ( .r
`  F )  =  ( .r `  F
)
8 eqid 2435 . . . . . . . 8  |-  ( 1r
`  F )  =  ( 1r `  F
)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 15947 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( ( R  .x.  X )  e.  V  /\  ( R  .x.  ( X  .+  X ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  X ) )  /\  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )  /\  ( ( ( Q ( .r `  F ) R ) 
.x.  X )  =  ( Q  .x.  ( R  .x.  X ) )  /\  ( ( 1r
`  F )  .x.  X )  =  X ) ) )
109simpld 446 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( R  .x.  X
)  e.  V  /\  ( R  .x.  ( X 
.+  X ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  X ) )  /\  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) ) )
1110simp3d 971 . . . . 5  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( Q  .+^  R ) 
.x.  X )  =  ( ( Q  .x.  X )  .+  ( R  .x.  X ) ) )
12113expa 1153 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K
) )  /\  ( X  e.  V  /\  X  e.  V )
)  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )
1312anabsan2 796 . . 3  |-  ( ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K
) )  /\  X  e.  V )  ->  (
( Q  .+^  R ) 
.x.  X )  =  ( ( Q  .x.  X )  .+  ( R  .x.  X ) ) )
1413exp42 595 . 2  |-  ( W  e.  LMod  ->  ( Q  e.  K  ->  ( R  e.  K  ->  ( X  e.  V  -> 
( ( Q  .+^  R )  .x.  X )  =  ( ( Q 
.x.  X )  .+  ( R  .x.  X ) ) ) ) ) )
15143imp2 1168 1  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
)  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521   .rcmulr 13522  Scalarcsca 13524   .scvsca 13525   1rcur 15654   LModclmod 15942
This theorem is referenced by:  lmod0vs  15975  lmodvneg1  15979  lmodcom  15982  lmodsubdir  15994  islss3  16027  lss1d  16031  prdslmodd  16037  lspsolvlem  16206  asclghm  16389  clmvsdir  19105  frlmup1  27218  mendlmod  27469  lshpkrlem4  29848  baerlem3lem1  32442  baerlem5blem1  32444  hgmapadd  32632
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-nul 4330
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-ov 6076  df-lmod 15944
  Copyright terms: Public domain W3C validator