MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsghm Structured version   Unicode version

Theorem lmodvsghm 15997
Description: Scalar multiplication of the vector space by a fixed scalar is an automorphism of the addiive group of vectors. (Contributed by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
lmodvsghm.v  |-  V  =  ( Base `  W
)
lmodvsghm.f  |-  F  =  (Scalar `  W )
lmodvsghm.s  |-  .x.  =  ( .s `  W )
lmodvsghm.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
lmodvsghm  |-  ( ( W  e.  LMod  /\  R  e.  K )  ->  (
x  e.  V  |->  ( R  .x.  x ) )  e.  ( W 
GrpHom  W ) )
Distinct variable groups:    x, K    x, R    x,  .x.    x, V   
x, W
Allowed substitution hint:    F( x)

Proof of Theorem lmodvsghm
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodvsghm.v . 2  |-  V  =  ( Base `  W
)
2 eqid 2435 . 2  |-  ( +g  `  W )  =  ( +g  `  W )
3 lmodgrp 15949 . . 3  |-  ( W  e.  LMod  ->  W  e. 
Grp )
43adantr 452 . 2  |-  ( ( W  e.  LMod  /\  R  e.  K )  ->  W  e.  Grp )
5 lmodvsghm.f . . . . 5  |-  F  =  (Scalar `  W )
6 lmodvsghm.s . . . . 5  |-  .x.  =  ( .s `  W )
7 lmodvsghm.k . . . . 5  |-  K  =  ( Base `  F
)
81, 5, 6, 7lmodvscl 15959 . . . 4  |-  ( ( W  e.  LMod  /\  R  e.  K  /\  x  e.  V )  ->  ( R  .x.  x )  e.  V )
983expa 1153 . . 3  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  x  e.  V
)  ->  ( R  .x.  x )  e.  V
)
10 eqid 2435 . . 3  |-  ( x  e.  V  |->  ( R 
.x.  x ) )  =  ( x  e.  V  |->  ( R  .x.  x ) )
119, 10fmptd 5885 . 2  |-  ( ( W  e.  LMod  /\  R  e.  K )  ->  (
x  e.  V  |->  ( R  .x.  x ) ) : V --> V )
121, 2, 5, 6, 7lmodvsdi 15965 . . . . 5  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  y  e.  V  /\  z  e.  V )
)  ->  ( R  .x.  ( y ( +g  `  W ) z ) )  =  ( ( R  .x.  y ) ( +g  `  W
) ( R  .x.  z ) ) )
13123exp2 1171 . . . 4  |-  ( W  e.  LMod  ->  ( R  e.  K  ->  (
y  e.  V  -> 
( z  e.  V  ->  ( R  .x.  (
y ( +g  `  W
) z ) )  =  ( ( R 
.x.  y ) ( +g  `  W ) ( R  .x.  z
) ) ) ) ) )
1413imp43 579 . . 3  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( R  .x.  (
y ( +g  `  W
) z ) )  =  ( ( R 
.x.  y ) ( +g  `  W ) ( R  .x.  z
) ) )
151, 2lmodvacl 15956 . . . . . 6  |-  ( ( W  e.  LMod  /\  y  e.  V  /\  z  e.  V )  ->  (
y ( +g  `  W
) z )  e.  V )
16153expb 1154 . . . . 5  |-  ( ( W  e.  LMod  /\  (
y  e.  V  /\  z  e.  V )
)  ->  ( y
( +g  `  W ) z )  e.  V
)
1716adantlr 696 . . . 4  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( y ( +g  `  W ) z )  e.  V )
18 oveq2 6081 . . . . 5  |-  ( x  =  ( y ( +g  `  W ) z )  ->  ( R  .x.  x )  =  ( R  .x.  (
y ( +g  `  W
) z ) ) )
19 ovex 6098 . . . . 5  |-  ( R 
.x.  ( y ( +g  `  W ) z ) )  e. 
_V
2018, 10, 19fvmpt 5798 . . . 4  |-  ( ( y ( +g  `  W
) z )  e.  V  ->  ( (
x  e.  V  |->  ( R  .x.  x ) ) `  ( y ( +g  `  W
) z ) )  =  ( R  .x.  ( y ( +g  `  W ) z ) ) )
2117, 20syl 16 . . 3  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( x  e.  V  |->  ( R  .x.  x ) ) `  ( y ( +g  `  W ) z ) )  =  ( R 
.x.  ( y ( +g  `  W ) z ) ) )
22 oveq2 6081 . . . . . 6  |-  ( x  =  y  ->  ( R  .x.  x )  =  ( R  .x.  y
) )
23 ovex 6098 . . . . . 6  |-  ( R 
.x.  y )  e. 
_V
2422, 10, 23fvmpt 5798 . . . . 5  |-  ( y  e.  V  ->  (
( x  e.  V  |->  ( R  .x.  x
) ) `  y
)  =  ( R 
.x.  y ) )
25 oveq2 6081 . . . . . 6  |-  ( x  =  z  ->  ( R  .x.  x )  =  ( R  .x.  z
) )
26 ovex 6098 . . . . . 6  |-  ( R 
.x.  z )  e. 
_V
2725, 10, 26fvmpt 5798 . . . . 5  |-  ( z  e.  V  ->  (
( x  e.  V  |->  ( R  .x.  x
) ) `  z
)  =  ( R 
.x.  z ) )
2824, 27oveqan12d 6092 . . . 4  |-  ( ( y  e.  V  /\  z  e.  V )  ->  ( ( ( x  e.  V  |->  ( R 
.x.  x ) ) `
 y ) ( +g  `  W ) ( ( x  e.  V  |->  ( R  .x.  x ) ) `  z ) )  =  ( ( R  .x.  y ) ( +g  `  W ) ( R 
.x.  z ) ) )
2928adantl 453 . . 3  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( ( x  e.  V  |->  ( R 
.x.  x ) ) `
 y ) ( +g  `  W ) ( ( x  e.  V  |->  ( R  .x.  x ) ) `  z ) )  =  ( ( R  .x.  y ) ( +g  `  W ) ( R 
.x.  z ) ) )
3014, 21, 293eqtr4d 2477 . 2  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( x  e.  V  |->  ( R  .x.  x ) ) `  ( y ( +g  `  W ) z ) )  =  ( ( ( x  e.  V  |->  ( R  .x.  x
) ) `  y
) ( +g  `  W
) ( ( x  e.  V  |->  ( R 
.x.  x ) ) `
 z ) ) )
311, 1, 2, 2, 4, 4, 11, 30isghmd 15007 1  |-  ( ( W  e.  LMod  /\  R  e.  K )  ->  (
x  e.  V  |->  ( R  .x.  x ) )  e.  ( W 
GrpHom  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521  Scalarcsca 13524   .scvsca 13525   Grpcgrp 14677    GrpHom cghm 14995   LModclmod 15942
This theorem is referenced by:  lmhmvsca  16113  gsumvsmul  26736
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-mnd 14682  df-grp 14804  df-ghm 14996  df-lmod 15944
  Copyright terms: Public domain W3C validator