MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsubcl Structured version   Unicode version

Theorem lmodvsubcl 15990
Description: Closure of vector subtraction. (hvsubcl 22521 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvsubcl.v  |-  V  =  ( Base `  W
)
lmodvsubcl.m  |-  .-  =  ( -g `  W )
Assertion
Ref Expression
lmodvsubcl  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )

Proof of Theorem lmodvsubcl
StepHypRef Expression
1 lmodgrp 15958 . 2  |-  ( W  e.  LMod  ->  W  e. 
Grp )
2 lmodvsubcl.v . . 3  |-  V  =  ( Base `  W
)
3 lmodvsubcl.m . . 3  |-  .-  =  ( -g `  W )
42, 3grpsubcl 14870 . 2  |-  ( ( W  e.  Grp  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y
)  e.  V )
51, 4syl3an1 1218 1  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937    = wceq 1653    e. wcel 1726   ` cfv 5455  (class class class)co 6082   Basecbs 13470   Grpcgrp 14686   -gcsg 14689   LModclmod 15951
This theorem is referenced by:  lspsnsub  16084  lvecvscan  16184  ip2subdi  16876  ip2eq  16885  ipcau2  19192  nmparlem  19197  minveclem1  19326  minveclem2  19328  minveclem4  19334  minveclem6  19336  pjthlem1  19339  pjthlem2  19340  eqlkr  29898  lkrlsp  29901  mapdpglem1  32471  mapdpglem2  32472  mapdpglem5N  32476  mapdpglem8  32478  mapdpglem9  32479  mapdpglem13  32483  mapdpglem14  32484  mapdpglem27  32498  baerlem3lem2  32509  baerlem5alem2  32510  baerlem5blem2  32511  mapdheq4lem  32530  mapdh6lem1N  32532  mapdh6lem2N  32533  hdmap1l6lem1  32607  hdmap1l6lem2  32608  hdmap11  32650  hdmapinvlem4  32723
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-0g 13728  df-mnd 14691  df-grp 14813  df-minusg 14814  df-sbg 14815  df-lmod 15953
  Copyright terms: Public domain W3C validator