Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmrcl Structured version   Unicode version

Theorem lmrcl 17287
 Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl

Proof of Theorem lmrcl
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 17285 . . 3
21dmmptss 5358 . 2
3 df-br 4205 . . 3
4 elfvdm 5749 . . 3
53, 4sylbi 188 . 2
62, 5sseldi 3338 1
 Colors of variables: wff set class Syntax hints:   wi 4   w3a 936   wcel 1725  wral 2697  wrex 2698  cop 3809  cuni 4007   class class class wbr 4204  copab 4257   cdm 4870   crn 4871   cres 4872  wf 5442  cfv 5446  (class class class)co 6073   cpm 7011  cc 8980  cuz 10480  ctop 16950  clm 17282 This theorem is referenced by:  lmcvg  17318 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-xp 4876  df-rel 4877  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fv 5454  df-lm 17285
 Copyright terms: Public domain W3C validator