MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmres Unicode version

Theorem lmres 17028
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmres.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmres.4  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
lmres.5  |-  ( ph  ->  M  e.  ZZ )
Assertion
Ref Expression
lmres  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P ) )

Proof of Theorem lmres
Dummy variables  j 
k  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmres.2 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 toponmax 16666 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
31, 2syl 15 . . . . . 6  |-  ( ph  ->  X  e.  J )
4 cnex 8818 . . . . . 6  |-  CC  e.  _V
5 ssid 3197 . . . . . . 7  |-  X  C_  X
6 uzssz 10247 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
7 zsscn 10032 . . . . . . . 8  |-  ZZ  C_  CC
86, 7sstri 3188 . . . . . . 7  |-  ( ZZ>= `  M )  C_  CC
9 pmss12g 6794 . . . . . . 7  |-  ( ( ( X  C_  X  /\  ( ZZ>= `  M )  C_  CC )  /\  ( X  e.  J  /\  CC  e.  _V ) )  ->  ( X  ^pm  ( ZZ>= `  M )
)  C_  ( X  ^pm  CC ) )
105, 8, 9mpanl12 663 . . . . . 6  |-  ( ( X  e.  J  /\  CC  e.  _V )  -> 
( X  ^pm  ( ZZ>=
`  M ) ) 
C_  ( X  ^pm  CC ) )
113, 4, 10sylancl 643 . . . . 5  |-  ( ph  ->  ( X  ^pm  ( ZZ>=
`  M ) ) 
C_  ( X  ^pm  CC ) )
12 fvex 5539 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
13 lmres.4 . . . . . 6  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
14 pmresg 6795 . . . . . 6  |-  ( ( ( ZZ>= `  M )  e.  _V  /\  F  e.  ( X  ^pm  CC ) )  ->  ( F  |`  ( ZZ>= `  M
) )  e.  ( X  ^pm  ( ZZ>= `  M ) ) )
1512, 13, 14sylancr 644 . . . . 5  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  M ) )  e.  ( X  ^pm  ( ZZ>= `  M )
) )
1611, 15sseldd 3181 . . . 4  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  M ) )  e.  ( X  ^pm  CC ) )
1716, 132thd 231 . . 3  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  M )
)  e.  ( X 
^pm  CC )  <->  F  e.  ( X  ^pm  CC ) ) )
18 eqid 2283 . . . . . . . . . 10  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
1918uztrn2 10245 . . . . . . . . 9  |-  ( ( j  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  ( ZZ>= `  M )
)
20 dmres 4976 . . . . . . . . . . . 12  |-  dom  ( F  |`  ( ZZ>= `  M
) )  =  ( ( ZZ>= `  M )  i^i  dom  F )
2120elin2 3359 . . . . . . . . . . 11  |-  ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  <->  ( k  e.  ( ZZ>= `  M )  /\  k  e.  dom  F ) )
2221baib 871 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  <->  k  e.  dom  F ) )
23 fvres 5542 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  =  ( F `
 k ) )
2423eleq1d 2349 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u  <->  ( F `  k )  e.  u
) )
2522, 24anbi12d 691 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u )  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2619, 25syl 15 . . . . . . . 8  |-  ( ( j  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u )  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2726ralbidva 2559 . . . . . . 7  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
2827rexbiia 2576 . . . . . 6  |-  ( E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( F  |`  ( ZZ>= `  M ) )  /\  ( ( F  |`  ( ZZ>= `  M )
) `  k )  e.  u )  <->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) )
2928imbi2i 303 . . . . 5  |-  ( ( P  e.  u  ->  E. j  e.  ( ZZ>=
`  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u ) )  <->  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
3029ralbii 2567 . . . 4  |-  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( F  |`  ( ZZ>= `  M ) )  /\  ( ( F  |`  ( ZZ>= `  M )
) `  k )  e.  u ) )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
3130a1i 10 . . 3  |-  ( ph  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u ) )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
3217, 313anbi13d 1254 . 2  |-  ( ph  ->  ( ( ( F  |`  ( ZZ>= `  M )
)  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u ) ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
33 lmres.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
341, 18, 33lmbr2 16989 . 2  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P  <->  ( ( F  |`  ( ZZ>= `  M
) )  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u ) ) ) ) )
351, 18, 33lmbr2 16989 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
3632, 34, 353bitr4rd 277 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   class class class wbr 4023   dom cdm 4689    |` cres 4691   ` cfv 5255  (class class class)co 5858    ^pm cpm 6773   CCcc 8735   ZZcz 10024   ZZ>=cuz 10230  TopOnctopon 16632   ~~> tclm 16956
This theorem is referenced by:  esumcvg  23454
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-neg 9040  df-z 10025  df-uz 10231  df-top 16636  df-topon 16639  df-lm 16959
  Copyright terms: Public domain W3C validator