HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnconi Unicode version

Theorem lnconi 22613
Description: Lemma for lnopconi 22614 and lnfnconi 22635. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncon.1  |-  ( T  e.  C  ->  S  e.  RR )
lncon.2  |-  ( ( T  e.  C  /\  y  e.  ~H )  ->  ( N `  ( T `  y )
)  <_  ( S  x.  ( normh `  y )
) )
lncon.3  |-  ( T  e.  C  <->  A. x  e.  ~H  A. z  e.  RR+  E. y  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
y  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
lncon.4  |-  ( y  e.  ~H  ->  ( N `  ( T `  y ) )  e.  RR )
lncon.5  |-  ( ( w  e.  ~H  /\  x  e.  ~H )  ->  ( T `  (
w  -h  x ) )  =  ( ( T `  w ) M ( T `  x ) ) )
Assertion
Ref Expression
lnconi  |-  ( T  e.  C  <->  E. x  e.  RR  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
) )
Distinct variable groups:    x, w, y, z, N    y, M    w, T, x, y, z   
x, S, y    y, C
Allowed substitution hints:    C( x, z, w)    S( z, w)    M( x, z, w)

Proof of Theorem lnconi
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 lncon.1 . . 3  |-  ( T  e.  C  ->  S  e.  RR )
2 lncon.2 . . . 4  |-  ( ( T  e.  C  /\  y  e.  ~H )  ->  ( N `  ( T `  y )
)  <_  ( S  x.  ( normh `  y )
) )
32ralrimiva 2626 . . 3  |-  ( T  e.  C  ->  A. y  e.  ~H  ( N `  ( T `  y ) )  <_  ( S  x.  ( normh `  y )
) )
4 oveq1 5865 . . . . . 6  |-  ( x  =  S  ->  (
x  x.  ( normh `  y ) )  =  ( S  x.  ( normh `  y ) ) )
54breq2d 4035 . . . . 5  |-  ( x  =  S  ->  (
( N `  ( T `  y )
)  <_  ( x  x.  ( normh `  y )
)  <->  ( N `  ( T `  y ) )  <_  ( S  x.  ( normh `  y )
) ) )
65ralbidv 2563 . . . 4  |-  ( x  =  S  ->  ( A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( x  x.  ( normh `  y )
)  <->  A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( S  x.  ( normh `  y )
) ) )
76rspcev 2884 . . 3  |-  ( ( S  e.  RR  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( S  x.  ( normh `  y ) ) )  ->  E. x  e.  RR  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
) )
81, 3, 7syl2anc 642 . 2  |-  ( T  e.  C  ->  E. x  e.  RR  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
) )
9 arch 9962 . . . . . 6  |-  ( x  e.  RR  ->  E. n  e.  NN  x  <  n
)
109adantr 451 . . . . 5  |-  ( ( x  e.  RR  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) ) )  ->  E. n  e.  NN  x  <  n
)
11 nnre 9753 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  RR )
12 simplll 734 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  x  e.  RR )
13 simpllr 735 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  n  e.  RR )
14 normcl 21704 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  RR )
1514adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  ( normh `  y )  e.  RR )
16 normge0 21705 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  ->  0  <_  ( normh `  y )
)
1716adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  0  <_  ( normh `  y )
)
18 ltle 8910 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  n  e.  RR )  ->  ( x  <  n  ->  x  <_  n )
)
1918imp 418 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n
)  ->  x  <_  n )
2019adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  x  <_  n )
2112, 13, 15, 17, 20lemul1ad 9696 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  (
x  x.  ( normh `  y ) )  <_ 
( n  x.  ( normh `  y ) ) )
22 lncon.4 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  ->  ( N `  ( T `  y ) )  e.  RR )
2322adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  ( N `  ( T `  y ) )  e.  RR )
24 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n
)  ->  x  e.  RR )
25 remulcl 8822 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  ( normh `  y )  e.  RR )  ->  (
x  x.  ( normh `  y ) )  e.  RR )
2624, 14, 25syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  (
x  x.  ( normh `  y ) )  e.  RR )
27 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n
)  ->  n  e.  RR )
28 remulcl 8822 . . . . . . . . . . . . 13  |-  ( ( n  e.  RR  /\  ( normh `  y )  e.  RR )  ->  (
n  x.  ( normh `  y ) )  e.  RR )
2927, 14, 28syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  (
n  x.  ( normh `  y ) )  e.  RR )
30 letr 8914 . . . . . . . . . . . 12  |-  ( ( ( N `  ( T `  y )
)  e.  RR  /\  ( x  x.  ( normh `  y ) )  e.  RR  /\  (
n  x.  ( normh `  y ) )  e.  RR )  ->  (
( ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
)  /\  ( x  x.  ( normh `  y )
)  <_  ( n  x.  ( normh `  y )
) )  ->  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) ) )
3123, 26, 29, 30syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  (
( ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
)  /\  ( x  x.  ( normh `  y )
)  <_  ( n  x.  ( normh `  y )
) )  ->  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) ) )
3221, 31mpan2d 655 . . . . . . . . . 10  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  (
( N `  ( T `  y )
)  <_  ( x  x.  ( normh `  y )
)  ->  ( N `  ( T `  y
) )  <_  (
n  x.  ( normh `  y ) ) ) )
3332ralimdva 2621 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n
)  ->  ( A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) )  ->  A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) ) )
3433impancom 427 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  n  e.  RR )  /\  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
) )  ->  (
x  <  n  ->  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) ) )
3534an32s 779 . . . . . . 7  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( x  x.  ( normh `  y )
) )  /\  n  e.  RR )  ->  (
x  <  n  ->  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) ) )
3611, 35sylan2 460 . . . . . 6  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( x  x.  ( normh `  y )
) )  /\  n  e.  NN )  ->  (
x  <  n  ->  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) ) )
3736reximdva 2655 . . . . 5  |-  ( ( x  e.  RR  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) ) )  ->  ( E. n  e.  NN  x  <  n  ->  E. n  e.  NN  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( n  x.  ( normh `  y )
) ) )
3810, 37mpd 14 . . . 4  |-  ( ( x  e.  RR  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) ) )  ->  E. n  e.  NN  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( n  x.  ( normh `  y )
) )
3938rexlimiva 2662 . . 3  |-  ( E. x  e.  RR  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) )  ->  E. n  e.  NN  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) )
40 simprr 733 . . . . . . . 8  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  z  e.  RR+ )
41 simpll 730 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  n  e.  NN )
4241nnrpd 10389 . . . . . . . 8  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  n  e.  RR+ )
4340, 42rpdivcld 10407 . . . . . . 7  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  ( z  /  n )  e.  RR+ )
44 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  ->  w  e.  ~H )
45 simprll 738 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  ->  x  e.  ~H )
46 hvsubcl 21597 . . . . . . . . . . . . . 14  |-  ( ( w  e.  ~H  /\  x  e.  ~H )  ->  ( w  -h  x
)  e.  ~H )
4744, 45, 46syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( w  -h  x
)  e.  ~H )
48 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( w  -h  x )  ->  ( T `  y )  =  ( T `  ( w  -h  x
) ) )
4948fveq2d 5529 . . . . . . . . . . . . . . 15  |-  ( y  =  ( w  -h  x )  ->  ( N `  ( T `  y ) )  =  ( N `  ( T `  ( w  -h  x ) ) ) )
50 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( w  -h  x )  ->  ( normh `  y )  =  ( normh `  ( w  -h  x ) ) )
5150oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( y  =  ( w  -h  x )  ->  (
n  x.  ( normh `  y ) )  =  ( n  x.  ( normh `  ( w  -h  x ) ) ) )
5249, 51breq12d 4036 . . . . . . . . . . . . . 14  |-  ( y  =  ( w  -h  x )  ->  (
( N `  ( T `  y )
)  <_  ( n  x.  ( normh `  y )
)  <->  ( N `  ( T `  ( w  -h  x ) ) )  <_  ( n  x.  ( normh `  ( w  -h  x ) ) ) ) )
5352rspcva 2882 . . . . . . . . . . . . 13  |-  ( ( ( w  -h  x
)  e.  ~H  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) )  ->  ( N `  ( T `  (
w  -h  x ) ) )  <_  (
n  x.  ( normh `  ( w  -h  x
) ) ) )
5447, 53sylan 457 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) )  ->  ( N `  ( T `  (
w  -h  x ) ) )  <_  (
n  x.  ( normh `  ( w  -h  x
) ) ) )
5554an32s 779 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  ( N `  ( T `  ( w  -h  x
) ) )  <_ 
( n  x.  ( normh `  ( w  -h  x ) ) ) )
5649eleq1d 2349 . . . . . . . . . . . . . . 15  |-  ( y  =  ( w  -h  x )  ->  (
( N `  ( T `  y )
)  e.  RR  <->  ( N `  ( T `  (
w  -h  x ) ) )  e.  RR ) )
5756, 22vtoclga 2849 . . . . . . . . . . . . . 14  |-  ( ( w  -h  x )  e.  ~H  ->  ( N `  ( T `  ( w  -h  x
) ) )  e.  RR )
5847, 57syl 15 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( N `  ( T `  ( w  -h  x ) ) )  e.  RR )
5911adantr 451 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  ->  n  e.  RR )
60 normcl 21704 . . . . . . . . . . . . . . 15  |-  ( ( w  -h  x )  e.  ~H  ->  ( normh `  ( w  -h  x ) )  e.  RR )
6147, 60syl 15 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( normh `  ( w  -h  x ) )  e.  RR )
62 remulcl 8822 . . . . . . . . . . . . . 14  |-  ( ( n  e.  RR  /\  ( normh `  ( w  -h  x ) )  e.  RR )  ->  (
n  x.  ( normh `  ( w  -h  x
) ) )  e.  RR )
6359, 61, 62syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( n  x.  ( normh `  ( w  -h  x ) ) )  e.  RR )
64 simprlr 739 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
z  e.  RR+ )
6564rpred 10390 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
z  e.  RR )
66 lelttr 8912 . . . . . . . . . . . . 13  |-  ( ( ( N `  ( T `  ( w  -h  x ) ) )  e.  RR  /\  (
n  x.  ( normh `  ( w  -h  x
) ) )  e.  RR  /\  z  e.  RR )  ->  (
( ( N `  ( T `  ( w  -h  x ) ) )  <_  ( n  x.  ( normh `  ( w  -h  x ) ) )  /\  ( n  x.  ( normh `  ( w  -h  x ) ) )  <  z )  -> 
( N `  ( T `  ( w  -h  x ) ) )  <  z ) )
6758, 63, 65, 66syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( ( ( N `
 ( T `  ( w  -h  x
) ) )  <_ 
( n  x.  ( normh `  ( w  -h  x ) ) )  /\  ( n  x.  ( normh `  ( w  -h  x ) ) )  <  z )  -> 
( N `  ( T `  ( w  -h  x ) ) )  <  z ) )
6867adantlr 695 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  (
( ( N `  ( T `  ( w  -h  x ) ) )  <_  ( n  x.  ( normh `  ( w  -h  x ) ) )  /\  ( n  x.  ( normh `  ( w  -h  x ) ) )  <  z )  -> 
( N `  ( T `  ( w  -h  x ) ) )  <  z ) )
6955, 68mpand 656 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  (
( n  x.  ( normh `  ( w  -h  x ) ) )  <  z  ->  ( N `  ( T `  ( w  -h  x
) ) )  < 
z ) )
70 nnrp 10363 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  RR+ )
7170rpregt0d 10396 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n  e.  RR  /\  0  <  n ) )
7271adantr 451 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( n  e.  RR  /\  0  <  n ) )
73 ltmuldiv2 9627 . . . . . . . . . . . 12  |-  ( ( ( normh `  ( w  -h  x ) )  e.  RR  /\  z  e.  RR  /\  ( n  e.  RR  /\  0  <  n ) )  -> 
( ( n  x.  ( normh `  ( w  -h  x ) ) )  <  z  <->  ( normh `  ( w  -h  x
) )  <  (
z  /  n ) ) )
7461, 65, 72, 73syl3anc 1182 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( ( n  x.  ( normh `  ( w  -h  x ) ) )  <  z  <->  ( normh `  ( w  -h  x
) )  <  (
z  /  n ) ) )
7574adantlr 695 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  (
( n  x.  ( normh `  ( w  -h  x ) ) )  <  z  <->  ( normh `  ( w  -h  x
) )  <  (
z  /  n ) ) )
76 lncon.5 . . . . . . . . . . . . . 14  |-  ( ( w  e.  ~H  /\  x  e.  ~H )  ->  ( T `  (
w  -h  x ) )  =  ( ( T `  w ) M ( T `  x ) ) )
7744, 45, 76syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( T `  (
w  -h  x ) )  =  ( ( T `  w ) M ( T `  x ) ) )
7877adantlr 695 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  ( T `  ( w  -h  x ) )  =  ( ( T `  w ) M ( T `  x ) ) )
7978fveq2d 5529 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  ( N `  ( T `  ( w  -h  x
) ) )  =  ( N `  (
( T `  w
) M ( T `
 x ) ) ) )
8079breq1d 4033 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  (
( N `  ( T `  ( w  -h  x ) ) )  <  z  <->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
8169, 75, 803imtr3d 258 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  (
( normh `  ( w  -h  x ) )  < 
( z  /  n
)  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
8281anassrs 629 . . . . . . . 8  |-  ( ( ( ( n  e.  NN  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  /\  w  e.  ~H )  ->  ( ( normh `  ( w  -h  x
) )  <  (
z  /  n )  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
8382ralrimiva 2626 . . . . . . 7  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  ( z  /  n )  -> 
( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z ) )
84 breq2 4027 . . . . . . . . . 10  |-  ( y  =  ( z  /  n )  ->  (
( normh `  ( w  -h  x ) )  < 
y  <->  ( normh `  (
w  -h  x ) )  <  ( z  /  n ) ) )
8584imbi1d 308 . . . . . . . . 9  |-  ( y  =  ( z  /  n )  ->  (
( ( normh `  (
w  -h  x ) )  <  y  -> 
( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z )  <-> 
( ( normh `  (
w  -h  x ) )  <  ( z  /  n )  -> 
( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z ) ) )
8685ralbidv 2563 . . . . . . . 8  |-  ( y  =  ( z  /  n )  ->  ( A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  y  -> 
( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z )  <->  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  ( z  /  n )  -> 
( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z ) ) )
8786rspcev 2884 . . . . . . 7  |-  ( ( ( z  /  n
)  e.  RR+  /\  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
( z  /  n
)  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )  ->  E. y  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  y  ->  ( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z ) )
8843, 83, 87syl2anc 642 . . . . . 6  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  E. y  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
y  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
8988ralrimivva 2635 . . . . 5  |-  ( ( n  e.  NN  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) )  ->  A. x  e.  ~H  A. z  e.  RR+  E. y  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
y  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
9089rexlimiva 2662 . . . 4  |-  ( E. n  e.  NN  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) )  ->  A. x  e.  ~H  A. z  e.  RR+  E. y  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  y  ->  ( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z ) )
91 lncon.3 . . . 4  |-  ( T  e.  C  <->  A. x  e.  ~H  A. z  e.  RR+  E. y  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
y  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
9290, 91sylibr 203 . . 3  |-  ( E. n  e.  NN  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) )  ->  T  e.  C
)
9339, 92syl 15 . 2  |-  ( E. x  e.  RR  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) )  ->  T  e.  C
)
948, 93impbii 180 1  |-  ( T  e.  C  <->  E. x  e.  RR  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737    x. cmul 8742    < clt 8867    <_ cle 8868    / cdiv 9423   NNcn 9746   RR+crp 10354   ~Hchil 21499   normhcno 21503    -h cmv 21505
This theorem is referenced by:  lnopconi  22614  lnfnconi  22635
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-hfvadd 21580  ax-hv0cl 21583  ax-hfvmul 21585  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his3 21663  ax-his4 21664
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-hnorm 21548  df-hvsub 21551
  Copyright terms: Public domain W3C validator