HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfn0i Unicode version

Theorem lnfn0i 23394
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1  |-  T  e. 
LinFn
Assertion
Ref Expression
lnfn0i  |-  ( T `
 0h )  =  0

Proof of Theorem lnfn0i
StepHypRef Expression
1 ax-hv0cl 22355 . . . 4  |-  0h  e.  ~H
2 lnfnl.1 . . . . . 6  |-  T  e. 
LinFn
32lnfnfi 23393 . . . . 5  |-  T : ~H
--> CC
43ffvelrni 5809 . . . 4  |-  ( 0h  e.  ~H  ->  ( T `  0h )  e.  CC )
51, 4ax-mp 8 . . 3  |-  ( T `
 0h )  e.  CC
6 pncan 9244 . . 3  |-  ( ( ( T `  0h )  e.  CC  /\  ( T `  0h )  e.  CC )  ->  (
( ( T `  0h )  +  ( T `  0h )
)  -  ( T `
 0h ) )  =  ( T `  0h ) )
75, 5, 6mp2an 654 . 2  |-  ( ( ( T `  0h )  +  ( T `  0h ) )  -  ( T `  0h )
)  =  ( T `
 0h )
8 ax-1cn 8982 . . . . . . 7  |-  1  e.  CC
92lnfnli 23392 . . . . . . 7  |-  ( ( 1  e.  CC  /\  0h  e.  ~H  /\  0h  e.  ~H )  ->  ( T `  ( (
1  .h  0h )  +h  0h ) )  =  ( ( 1  x.  ( T `  0h ) )  +  ( T `  0h )
) )
108, 1, 1, 9mp3an 1279 . . . . . 6  |-  ( T `
 ( ( 1  .h  0h )  +h 
0h ) )  =  ( ( 1  x.  ( T `  0h ) )  +  ( T `  0h )
)
118, 1hvmulcli 22366 . . . . . . . . 9  |-  ( 1  .h  0h )  e. 
~H
12 ax-hvaddid 22356 . . . . . . . . 9  |-  ( ( 1  .h  0h )  e.  ~H  ->  ( (
1  .h  0h )  +h  0h )  =  ( 1  .h  0h )
)
1311, 12ax-mp 8 . . . . . . . 8  |-  ( ( 1  .h  0h )  +h  0h )  =  ( 1  .h  0h )
14 ax-hvmulid 22358 . . . . . . . . 9  |-  ( 0h  e.  ~H  ->  (
1  .h  0h )  =  0h )
151, 14ax-mp 8 . . . . . . . 8  |-  ( 1  .h  0h )  =  0h
1613, 15eqtri 2408 . . . . . . 7  |-  ( ( 1  .h  0h )  +h  0h )  =  0h
1716fveq2i 5672 . . . . . 6  |-  ( T `
 ( ( 1  .h  0h )  +h 
0h ) )  =  ( T `  0h )
1810, 17eqtr3i 2410 . . . . 5  |-  ( ( 1  x.  ( T `
 0h ) )  +  ( T `  0h ) )  =  ( T `  0h )
195mulid2i 9027 . . . . . 6  |-  ( 1  x.  ( T `  0h ) )  =  ( T `  0h )
2019oveq1i 6031 . . . . 5  |-  ( ( 1  x.  ( T `
 0h ) )  +  ( T `  0h ) )  =  ( ( T `  0h )  +  ( T `  0h ) )
2118, 20eqtr3i 2410 . . . 4  |-  ( T `
 0h )  =  ( ( T `  0h )  +  ( T `  0h )
)
2221oveq1i 6031 . . 3  |-  ( ( T `  0h )  -  ( T `  0h ) )  =  ( ( ( T `  0h )  +  ( T `  0h )
)  -  ( T `
 0h ) )
235subidi 9304 . . 3  |-  ( ( T `  0h )  -  ( T `  0h ) )  =  0
2422, 23eqtr3i 2410 . 2  |-  ( ( ( T `  0h )  +  ( T `  0h ) )  -  ( T `  0h )
)  =  0
257, 24eqtr3i 2410 1  |-  ( T `
 0h )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   ` cfv 5395  (class class class)co 6021   CCcc 8922   0cc0 8924   1c1 8925    + caddc 8927    x. cmul 8929    - cmin 9224   ~Hchil 22271    +h cva 22272    .h csm 22273   0hc0v 22276   LinFnclf 22306
This theorem is referenced by:  lnfnmuli  23396  lnfn0  23399  nmbdfnlbi  23401  nmcfnexi  23403  nmcfnlbi  23404  nlelshi  23412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-hilex 22351  ax-hv0cl 22355  ax-hvaddid 22356  ax-hfvmul 22357  ax-hvmulid 22358
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-po 4445  df-so 4446  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-riota 6486  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-ltxr 9059  df-sub 9226  df-lnfn 23200
  Copyright terms: Public domain W3C validator