HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnfi Unicode version

Theorem lnfnfi 22621
Description: A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1  |-  T  e. 
LinFn
Assertion
Ref Expression
lnfnfi  |-  T : ~H
--> CC

Proof of Theorem lnfnfi
StepHypRef Expression
1 lnfnl.1 . 2  |-  T  e. 
LinFn
2 lnfnf 22464 . 2  |-  ( T  e.  LinFn  ->  T : ~H
--> CC )
31, 2ax-mp 8 1  |-  T : ~H
--> CC
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   -->wf 5251   CCcc 8735   ~Hchil 21499   LinFnclf 21534
This theorem is referenced by:  lnfn0i  22622  lnfnaddi  22623  lnfnmuli  22624  lnfnsubi  22626  nmbdfnlbi  22629  nmcfnexi  22631  nmcfnlbi  22632  lnfnconi  22635  nlelshi  22640  nlelchi  22641  riesz3i  22642  riesz4i  22643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-hilex 21579
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-lnfn 22428
  Copyright terms: Public domain W3C validator