HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnmul Structured version   Unicode version

Theorem lnfnmul 23551
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnfnmul  |-  ( ( T  e.  LinFn  /\  A  e.  CC  /\  B  e. 
~H )  ->  ( T `  ( A  .h  B ) )  =  ( A  x.  ( T `  B )
) )

Proof of Theorem lnfnmul
StepHypRef Expression
1 fveq1 5727 . . . . 5  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( T `  ( A  .h  B
) )  =  ( if ( T  e. 
LinFn ,  T , 
( ~H  X.  {
0 } ) ) `
 ( A  .h  B ) ) )
2 fveq1 5727 . . . . . 6  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( T `  B )  =  ( if ( T  e. 
LinFn ,  T , 
( ~H  X.  {
0 } ) ) `
 B ) )
32oveq2d 6097 . . . . 5  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( A  x.  ( T `  B ) )  =  ( A  x.  ( if ( T  e.  LinFn ,  T ,  ( ~H  X.  { 0 } ) ) `  B ) ) )
41, 3eqeq12d 2450 . . . 4  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( ( T `
 ( A  .h  B ) )  =  ( A  x.  ( T `  B )
)  <->  ( if ( T  e.  LinFn ,  T ,  ( ~H  X.  { 0 } ) ) `  ( A  .h  B ) )  =  ( A  x.  ( if ( T  e. 
LinFn ,  T , 
( ~H  X.  {
0 } ) ) `
 B ) ) ) )
54imbi2d 308 . . 3  |-  ( T  =  if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) )  ->  ( ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( T `  ( A  .h  B )
)  =  ( A  x.  ( T `  B ) ) )  <-> 
( ( A  e.  CC  /\  B  e. 
~H )  ->  ( if ( T  e.  LinFn ,  T ,  ( ~H 
X.  { 0 } ) ) `  ( A  .h  B )
)  =  ( A  x.  ( if ( T  e.  LinFn ,  T ,  ( ~H  X.  { 0 } ) ) `  B ) ) ) ) )
6 0lnfn 23488 . . . . 5  |-  ( ~H 
X.  { 0 } )  e.  LinFn
76elimel 3791 . . . 4  |-  if ( T  e.  LinFn ,  T ,  ( ~H  X.  { 0 } ) )  e.  LinFn
87lnfnmuli 23547 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( if ( T  e.  LinFn ,  T , 
( ~H  X.  {
0 } ) ) `
 ( A  .h  B ) )  =  ( A  x.  ( if ( T  e.  LinFn ,  T ,  ( ~H 
X.  { 0 } ) ) `  B
) ) )
95, 8dedth 3780 . 2  |-  ( T  e.  LinFn  ->  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( T `  ( A  .h  B ) )  =  ( A  x.  ( T `  B )
) ) )
1093impib 1151 1  |-  ( ( T  e.  LinFn  /\  A  e.  CC  /\  B  e. 
~H )  ->  ( T `  ( A  .h  B ) )  =  ( A  x.  ( T `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ifcif 3739   {csn 3814    X. cxp 4876   ` cfv 5454  (class class class)co 6081   CCcc 8988   0cc0 8990    x. cmul 8995   ~Hchil 22422    .h csm 22424   LinFnclf 22457
This theorem is referenced by:  kbass4  23622
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-hilex 22502  ax-hfvadd 22503  ax-hv0cl 22506  ax-hvaddid 22507  ax-hfvmul 22508  ax-hvmulid 22509
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-ltxr 9125  df-sub 9293  df-lnfn 23351
  Copyright terms: Public domain W3C validator