Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnjatN Unicode version

Theorem lnjatN 29895
Description: Given an atom in a line, there is another atom which when joined equals the line. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnjat.b  |-  B  =  ( Base `  K
)
lnjat.l  |-  .<_  =  ( le `  K )
lnjat.j  |-  .\/  =  ( join `  K )
lnjat.a  |-  A  =  ( Atoms `  K )
lnjat.n  |-  N  =  ( Lines `  K )
lnjat.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
lnjatN  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  E. q  e.  A  ( q  =/=  P  /\  X  =  ( P  .\/  q
) ) )
Distinct variable groups:    A, q    B, q    K, q    .<_ , q    M, q    N, q    P, q    X, q
Allowed substitution hint:    .\/ ( q)

Proof of Theorem lnjatN
StepHypRef Expression
1 simpl1 960 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  K  e.  HL )
2 simpl2 961 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  X  e.  B )
3 simprl 733 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  ( M `  X )  e.  N
)
4 lnjat.b . . . 4  |-  B  =  ( Base `  K
)
5 lnjat.l . . . 4  |-  .<_  =  ( le `  K )
6 lnjat.a . . . 4  |-  A  =  ( Atoms `  K )
7 lnjat.n . . . 4  |-  N  =  ( Lines `  K )
8 lnjat.m . . . 4  |-  M  =  ( pmap `  K
)
94, 5, 6, 7, 8lnatexN 29894 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
101, 2, 3, 9syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
11 simp3l 985 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  q  =/=  P )
12 simp1l1 1050 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  K  e.  HL )
13 simp1l2 1051 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  X  e.  B )
14 simp1rl 1022 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  ( M `  X )  e.  N
)
15 simp1l3 1052 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  P  e.  A )
16 simp2 958 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  q  e.  A )
1711necomd 2634 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  P  =/=  q )
18 simp1rr 1023 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  P  .<_  X )
19 simp3r 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  q  .<_  X )
20 lnjat.j . . . . . . 7  |-  .\/  =  ( join `  K )
214, 5, 20, 6, 7, 8lneq2at 29893 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  q  e.  A  /\  P  =/=  q
)  /\  ( P  .<_  X  /\  q  .<_  X ) )  ->  X  =  ( P  .\/  q ) )
2212, 13, 14, 15, 16, 17, 18, 19, 21syl332anc 1215 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  X  =  ( P  .\/  q ) )
2311, 22jca 519 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  ( q  =/=  P  /\  X  =  ( P  .\/  q
) ) )
24233exp 1152 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  ( q  e.  A  ->  ( ( q  =/=  P  /\  q  .<_  X )  -> 
( q  =/=  P  /\  X  =  ( P  .\/  q ) ) ) ) )
2524reximdvai 2760 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  ( E. q  e.  A  (
q  =/=  P  /\  q  .<_  X )  ->  E. q  e.  A  ( q  =/=  P  /\  X  =  ( P  .\/  q ) ) ) )
2610, 25mpd 15 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  E. q  e.  A  ( q  =/=  P  /\  X  =  ( P  .\/  q
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   E.wrex 2651   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   Basecbs 13397   lecple 13464   joincjn 14329   Atomscatm 29379   HLchlt 29466   Linesclines 29609   pmapcpmap 29612
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-undef 6480  df-riota 6486  df-poset 14331  df-plt 14343  df-lub 14359  df-glb 14360  df-join 14361  df-meet 14362  df-p0 14396  df-lat 14403  df-clat 14465  df-oposet 29292  df-ol 29294  df-oml 29295  df-covers 29382  df-ats 29383  df-atl 29414  df-cvlat 29438  df-hlat 29467  df-lines 29616  df-pmap 29619
  Copyright terms: Public domain W3C validator