Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnjatN Structured version   Unicode version

Theorem lnjatN 30514
Description: Given an atom in a line, there is another atom which when joined equals the line. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnjat.b  |-  B  =  ( Base `  K
)
lnjat.l  |-  .<_  =  ( le `  K )
lnjat.j  |-  .\/  =  ( join `  K )
lnjat.a  |-  A  =  ( Atoms `  K )
lnjat.n  |-  N  =  ( Lines `  K )
lnjat.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
lnjatN  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  E. q  e.  A  ( q  =/=  P  /\  X  =  ( P  .\/  q
) ) )
Distinct variable groups:    A, q    B, q    K, q    .<_ , q    M, q    N, q    P, q    X, q
Allowed substitution hint:    .\/ ( q)

Proof of Theorem lnjatN
StepHypRef Expression
1 simpl1 960 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  K  e.  HL )
2 simpl2 961 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  X  e.  B )
3 simprl 733 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  ( M `  X )  e.  N
)
4 lnjat.b . . . 4  |-  B  =  ( Base `  K
)
5 lnjat.l . . . 4  |-  .<_  =  ( le `  K )
6 lnjat.a . . . 4  |-  A  =  ( Atoms `  K )
7 lnjat.n . . . 4  |-  N  =  ( Lines `  K )
8 lnjat.m . . . 4  |-  M  =  ( pmap `  K
)
94, 5, 6, 7, 8lnatexN 30513 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
101, 2, 3, 9syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
11 simp3l 985 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  q  =/=  P )
12 simp1l1 1050 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  K  e.  HL )
13 simp1l2 1051 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  X  e.  B )
14 simp1rl 1022 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  ( M `  X )  e.  N
)
15 simp1l3 1052 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  P  e.  A )
16 simp2 958 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  q  e.  A )
1711necomd 2681 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  P  =/=  q )
18 simp1rr 1023 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  P  .<_  X )
19 simp3r 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  q  .<_  X )
20 lnjat.j . . . . . . 7  |-  .\/  =  ( join `  K )
214, 5, 20, 6, 7, 8lneq2at 30512 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  q  e.  A  /\  P  =/=  q
)  /\  ( P  .<_  X  /\  q  .<_  X ) )  ->  X  =  ( P  .\/  q ) )
2212, 13, 14, 15, 16, 17, 18, 19, 21syl332anc 1215 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  X  =  ( P  .\/  q ) )
2311, 22jca 519 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  (
( M `  X
)  e.  N  /\  P  .<_  X ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  .<_  X ) )  ->  ( q  =/=  P  /\  X  =  ( P  .\/  q
) ) )
24233exp 1152 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  ( q  e.  A  ->  ( ( q  =/=  P  /\  q  .<_  X )  -> 
( q  =/=  P  /\  X  =  ( P  .\/  q ) ) ) ) )
2524reximdvai 2808 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  ( E. q  e.  A  (
q  =/=  P  /\  q  .<_  X )  ->  E. q  e.  A  ( q  =/=  P  /\  X  =  ( P  .\/  q ) ) ) )
2610, 25mpd 15 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( ( M `  X )  e.  N  /\  P  .<_  X ) )  ->  E. q  e.  A  ( q  =/=  P  /\  X  =  ( P  .\/  q
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   Atomscatm 29998   HLchlt 30085   Linesclines 30228   pmapcpmap 30231
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-lines 30235  df-pmap 30238
  Copyright terms: Public domain W3C validator