Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmepi Structured version   Unicode version

Theorem lnmepi 27174
 Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
lnmepi.b
Assertion
Ref Expression
lnmepi LMHom LNoeM LNoeM

Proof of Theorem lnmepi
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 lmhmlmod2 16113 . . 3 LMHom
213ad2ant1 979 . 2 LMHom LNoeM
3 eqid 2438 . . . . . . . . 9
4 lnmepi.b . . . . . . . . 9
53, 4lmhmf 16115 . . . . . . . 8 LMHom
653ad2ant1 979 . . . . . . 7 LMHom LNoeM
7 simp3 960 . . . . . . 7 LMHom LNoeM
8 dffo2 5660 . . . . . . 7
96, 7, 8sylanbrc 647 . . . . . 6 LMHom LNoeM
10 eqid 2438 . . . . . . 7
114, 10lssss 16018 . . . . . 6
12 foimacnv 5695 . . . . . 6
139, 11, 12syl2an 465 . . . . 5 LMHom LNoeM
1413oveq2d 6100 . . . 4 LMHom LNoeM s s
15 eqid 2438 . . . . 5 s s
16 eqid 2438 . . . . 5 s s
17 eqid 2438 . . . . 5
18 simpl2 962 . . . . . 6 LMHom LNoeM LNoeM
1917, 10lmhmpreima 16129 . . . . . . 7 LMHom
20193ad2antl1 1120 . . . . . 6 LMHom LNoeM
2117, 16lnmlssfg 27169 . . . . . 6 LNoeM s LFinGen
2218, 20, 21syl2anc 644 . . . . 5 LMHom LNoeM s LFinGen
23 simpl1 961 . . . . 5 LMHom LNoeM LMHom
2415, 16, 17, 22, 20, 23lmhmfgima 27173 . . . 4 LMHom LNoeM s LFinGen
2514, 24eqeltrrd 2513 . . 3 LMHom LNoeM s LFinGen
2625ralrimiva 2791 . 2 LMHom LNoeM s LFinGen
2710islnm 27166 . 2 LNoeM s LFinGen
282, 26, 27sylanbrc 647 1 LMHom LNoeM LNoeM
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   w3a 937   wceq 1653   wcel 1726  wral 2707   wss 3322  ccnv 4880   crn 4882  cima 4884  wf 5453  wfo 5455  cfv 5457  (class class class)co 6084  cbs 13474   ↾s cress 13475  clmod 15955  clss 16013   LMHom clmhm 16100  LFinGenclfig 27156  LNoeMclnm 27164 This theorem is referenced by:  lnmlmic  27177  pwslnmlem1  27185  lnrfg  27314 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-sca 13550  df-vsca 13551  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-sbg 14819  df-subg 14946  df-ghm 15009  df-mgp 15654  df-rng 15668  df-ur 15670  df-lmod 15957  df-lss 16014  df-lsp 16053  df-lmhm 16103  df-lfig 27157  df-lnm 27165
 Copyright terms: Public domain W3C validator