Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlssfg Unicode version

Theorem lnmlssfg 27281
Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s  |-  S  =  ( LSubSp `  M )
lnmlssfg.r  |-  R  =  ( Ms  U )
Assertion
Ref Expression
lnmlssfg  |-  ( ( M  e. LNoeM  /\  U  e.  S )  ->  R  e. LFinGen )

Proof of Theorem lnmlssfg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 lnmlssfg.s . . . 4  |-  S  =  ( LSubSp `  M )
21islnm 27278 . . 3  |-  ( M  e. LNoeM 
<->  ( M  e.  LMod  /\ 
A. a  e.  S  ( Ms  a )  e. LFinGen ) )
32simprbi 450 . 2  |-  ( M  e. LNoeM  ->  A. a  e.  S  ( Ms  a )  e. LFinGen )
4 oveq2 5882 . . . . 5  |-  ( a  =  U  ->  ( Ms  a )  =  ( Ms  U ) )
5 lnmlssfg.r . . . . 5  |-  R  =  ( Ms  U )
64, 5syl6eqr 2346 . . . 4  |-  ( a  =  U  ->  ( Ms  a )  =  R )
76eleq1d 2362 . . 3  |-  ( a  =  U  ->  (
( Ms  a )  e. LFinGen  <->  R  e. LFinGen ) )
87rspcv 2893 . 2  |-  ( U  e.  S  ->  ( A. a  e.  S  ( Ms  a )  e. LFinGen  ->  R  e. LFinGen ) )
93, 8mpan9 455 1  |-  ( ( M  e. LNoeM  /\  U  e.  S )  ->  R  e. LFinGen )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   ` cfv 5271  (class class class)co 5874   ↾s cress 13165   LModclmod 15643   LSubSpclss 15705  LFinGenclfig 27268  LNoeMclnm 27276
This theorem is referenced by:  lnmlsslnm  27282  lnmfg  27283  lnmepi  27286  lmhmlnmsplit  27288  lnrfgtr  27427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-lnm 27277
  Copyright terms: Public domain W3C validator