Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlssfg Structured version   Unicode version

Theorem lnmlssfg 27146
 Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s
lnmlssfg.r s
Assertion
Ref Expression
lnmlssfg LNoeM LFinGen

Proof of Theorem lnmlssfg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 lnmlssfg.s . . . 4
21islnm 27143 . . 3 LNoeM s LFinGen
32simprbi 451 . 2 LNoeM s LFinGen
4 oveq2 6081 . . . . 5 s s
5 lnmlssfg.r . . . . 5 s
64, 5syl6eqr 2485 . . . 4 s
76eleq1d 2501 . . 3 s LFinGen LFinGen
87rspcv 3040 . 2 s LFinGen LFinGen
93, 8mpan9 456 1 LNoeM LFinGen
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  wral 2697  cfv 5446  (class class class)co 6073   ↾s cress 13462  clmod 15942  clss 16000  LFinGenclfig 27133  LNoeMclnm 27141 This theorem is referenced by:  lnmlsslnm  27147  lnmfg  27148  lnmepi  27151  lmhmlnmsplit  27153  lnrfgtr  27292 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-ov 6076  df-lnm 27142
 Copyright terms: Public domain W3C validator