MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnoadd Unicode version

Theorem lnoadd 21352
Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoadd.1  |-  X  =  ( BaseSet `  U )
lnoadd.5  |-  G  =  ( +v `  U
)
lnoadd.6  |-  H  =  ( +v `  W
)
lnoadd.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
lnoadd  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( T `  ( A G B ) )  =  ( ( T `  A
) H ( T `
 B ) ) )

Proof of Theorem lnoadd
StepHypRef Expression
1 ax-1cn 8811 . . 3  |-  1  e.  CC
2 lnoadd.1 . . . 4  |-  X  =  ( BaseSet `  U )
3 eqid 2296 . . . 4  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
4 lnoadd.5 . . . 4  |-  G  =  ( +v `  U
)
5 lnoadd.6 . . . 4  |-  H  =  ( +v `  W
)
6 eqid 2296 . . . 4  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
7 eqid 2296 . . . 4  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
8 lnoadd.7 . . . 4  |-  L  =  ( U  LnOp  W
)
92, 3, 4, 5, 6, 7, 8lnolin 21348 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  (
1  e.  CC  /\  A  e.  X  /\  B  e.  X )
)  ->  ( T `  ( ( 1 ( .s OLD `  U
) A ) G B ) )  =  ( ( 1 ( .s OLD `  W
) ( T `  A ) ) H ( T `  B
) ) )
101, 9mp3anr1 1274 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( T `  ( ( 1 ( .s OLD `  U
) A ) G B ) )  =  ( ( 1 ( .s OLD `  W
) ( T `  A ) ) H ( T `  B
) ) )
11 simp1 955 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  U  e.  NrmCVec )
12 simpl 443 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  ->  A  e.  X )
132, 6nvsid 21201 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 ( .s OLD `  U ) A )  =  A )
1411, 12, 13syl2an 463 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( 1 ( .s OLD `  U
) A )  =  A )
1514oveq1d 5889 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( (
1 ( .s OLD `  U ) A ) G B )  =  ( A G B ) )
1615fveq2d 5545 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( T `  ( ( 1 ( .s OLD `  U
) A ) G B ) )  =  ( T `  ( A G B ) ) )
17 simpl2 959 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  W  e.  NrmCVec )
182, 3, 8lnof 21349 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> ( BaseSet `  W
) )
19 ffvelrn 5679 . . . . 5  |-  ( ( T : X --> ( BaseSet `  W )  /\  A  e.  X )  ->  ( T `  A )  e.  ( BaseSet `  W )
)
2018, 12, 19syl2an 463 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( T `  A )  e.  (
BaseSet `  W ) )
213, 7nvsid 21201 . . . 4  |-  ( ( W  e.  NrmCVec  /\  ( T `  A )  e.  ( BaseSet `  W )
)  ->  ( 1 ( .s OLD `  W
) ( T `  A ) )  =  ( T `  A
) )
2217, 20, 21syl2anc 642 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( 1 ( .s OLD `  W
) ( T `  A ) )  =  ( T `  A
) )
2322oveq1d 5889 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( (
1 ( .s OLD `  W ) ( T `
 A ) ) H ( T `  B ) )  =  ( ( T `  A ) H ( T `  B ) ) )
2410, 16, 233eqtr3d 2336 1  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( T `  ( A G B ) )  =  ( ( T `  A
) H ( T `
 B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   1c1 8754   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159    LnOp clno 21334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-1cn 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-map 6790  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172  df-lno 21338
  Copyright terms: Public domain W3C validator