MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnof Unicode version

Theorem lnof 21349
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnof.1  |-  X  =  ( BaseSet `  U )
lnof.2  |-  Y  =  ( BaseSet `  W )
lnof.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
lnof  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> Y )

Proof of Theorem lnof
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnof.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 lnof.2 . . . 4  |-  Y  =  ( BaseSet `  W )
3 eqid 2296 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
4 eqid 2296 . . . 4  |-  ( +v
`  W )  =  ( +v `  W
)
5 eqid 2296 . . . 4  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
6 eqid 2296 . . . 4  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
7 lnof.7 . . . 4  |-  L  =  ( U  LnOp  W
)
81, 2, 3, 4, 5, 6, 7islno 21347 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  L  <->  ( T : X --> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( ( x ( .s OLD `  W
) ( T `  y ) ) ( +v `  W ) ( T `  z
) ) ) ) )
98simprbda 606 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  T  e.  L )  ->  T : X --> Y )
1093impa 1146 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159    LnOp clno 21334
This theorem is referenced by:  lno0  21350  lnocoi  21351  lnoadd  21352  lnosub  21353  lnomul  21354  isblo2  21377  blof  21379  nmlno0lem  21387  nmlnoubi  21390  nmlnogt0  21391  lnon0  21392  isblo3i  21395  blocnilem  21398  blocni  21399  htthlem  21513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-lno 21338
  Copyright terms: Public domain W3C validator