MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnof Unicode version

Theorem lnof 21333
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnof.1  |-  X  =  ( BaseSet `  U )
lnof.2  |-  Y  =  ( BaseSet `  W )
lnof.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
lnof  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> Y )

Proof of Theorem lnof
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnof.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 lnof.2 . . . 4  |-  Y  =  ( BaseSet `  W )
3 eqid 2283 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
4 eqid 2283 . . . 4  |-  ( +v
`  W )  =  ( +v `  W
)
5 eqid 2283 . . . 4  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
6 eqid 2283 . . . 4  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
7 lnof.7 . . . 4  |-  L  =  ( U  LnOp  W
)
81, 2, 3, 4, 5, 6, 7islno 21331 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  L  <->  ( T : X --> Y  /\  A. x  e.  CC  A. y  e.  X  A. z  e.  X  ( T `  ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( ( x ( .s OLD `  W
) ( T `  y ) ) ( +v `  W ) ( T `  z
) ) ) ) )
98simprbda 606 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  T  e.  L )  ->  T : X --> Y )
1093impa 1146 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   NrmCVeccnv 21140   +vcpv 21141   BaseSetcba 21142   .s
OLDcns 21143    LnOp clno 21318
This theorem is referenced by:  lno0  21334  lnocoi  21335  lnoadd  21336  lnosub  21337  lnomul  21338  isblo2  21361  blof  21363  nmlno0lem  21371  nmlnoubi  21374  nmlnogt0  21375  lnon0  21376  isblo3i  21379  blocnilem  21382  blocni  21383  htthlem  21497
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-lno 21322
  Copyright terms: Public domain W3C validator