MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnomul Unicode version

Theorem lnomul 21354
Description: Scalar multiplication property of a linear operator. (Contributed by NM, 5-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnomul.1  |-  X  =  ( BaseSet `  U )
lnomul.5  |-  R  =  ( .s OLD `  U
)
lnomul.6  |-  S  =  ( .s OLD `  W
)
lnomul.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
lnomul  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( T `  ( A R B ) )  =  ( A S ( T `  B
) ) )

Proof of Theorem lnomul
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L ) )
2 simprl 732 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  ->  A  e.  CC )
3 simprr 733 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  ->  B  e.  X )
4 simpl1 958 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  ->  U  e.  NrmCVec )
5 lnomul.1 . . . . 5  |-  X  =  ( BaseSet `  U )
6 eqid 2296 . . . . 5  |-  ( 0vec `  U )  =  (
0vec `  U )
75, 6nvzcl 21208 . . . 4  |-  ( U  e.  NrmCVec  ->  ( 0vec `  U
)  e.  X )
84, 7syl 15 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( 0vec `  U )  e.  X )
9 eqid 2296 . . . 4  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
10 eqid 2296 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
11 eqid 2296 . . . 4  |-  ( +v
`  W )  =  ( +v `  W
)
12 lnomul.5 . . . 4  |-  R  =  ( .s OLD `  U
)
13 lnomul.6 . . . 4  |-  S  =  ( .s OLD `  W
)
14 lnomul.7 . . . 4  |-  L  =  ( U  LnOp  W
)
155, 9, 10, 11, 12, 13, 14lnolin 21348 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X  /\  ( 0vec `  U )  e.  X ) )  -> 
( T `  (
( A R B ) ( +v `  U ) ( 0vec `  U ) ) )  =  ( ( A S ( T `  B ) ) ( +v `  W ) ( T `  ( 0vec `  U ) ) ) )
161, 2, 3, 8, 15syl13anc 1184 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( T `  (
( A R B ) ( +v `  U ) ( 0vec `  U ) ) )  =  ( ( A S ( T `  B ) ) ( +v `  W ) ( T `  ( 0vec `  U ) ) ) )
175, 12nvscl 21200 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  ->  ( A R B )  e.  X )
184, 2, 3, 17syl3anc 1182 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( A R B )  e.  X )
195, 10, 6nv0rid 21209 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A R B )  e.  X )  ->  (
( A R B ) ( +v `  U ) ( 0vec `  U ) )  =  ( A R B ) )
204, 18, 19syl2anc 642 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( ( A R B ) ( +v
`  U ) (
0vec `  U )
)  =  ( A R B ) )
2120fveq2d 5545 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( T `  (
( A R B ) ( +v `  U ) ( 0vec `  U ) ) )  =  ( T `  ( A R B ) ) )
22 eqid 2296 . . . . . 6  |-  ( 0vec `  W )  =  (
0vec `  W )
235, 9, 6, 22, 14lno0 21350 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T `  ( 0vec `  U ) )  =  ( 0vec `  W
) )
2423oveq2d 5890 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  (
( A S ( T `  B ) ) ( +v `  W ) ( T `
 ( 0vec `  U
) ) )  =  ( ( A S ( T `  B
) ) ( +v
`  W ) (
0vec `  W )
) )
2524adantr 451 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( ( A S ( T `  B
) ) ( +v
`  W ) ( T `  ( 0vec `  U ) ) )  =  ( ( A S ( T `  B ) ) ( +v `  W ) ( 0vec `  W
) ) )
26 simpl2 959 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  ->  W  e.  NrmCVec )
275, 9, 14lnof 21349 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> ( BaseSet `  W
) )
2827adantr 451 . . . . . 6  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  ->  T : X --> ( BaseSet `  W ) )
29 ffvelrn 5679 . . . . . 6  |-  ( ( T : X --> ( BaseSet `  W )  /\  B  e.  X )  ->  ( T `  B )  e.  ( BaseSet `  W )
)
3028, 3, 29syl2anc 642 . . . . 5  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( T `  B
)  e.  ( BaseSet `  W ) )
319, 13nvscl 21200 . . . . 5  |-  ( ( W  e.  NrmCVec  /\  A  e.  CC  /\  ( T `
 B )  e.  ( BaseSet `  W )
)  ->  ( A S ( T `  B ) )  e.  ( BaseSet `  W )
)
3226, 2, 30, 31syl3anc 1182 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( A S ( T `  B ) )  e.  ( BaseSet `  W ) )
339, 11, 22nv0rid 21209 . . . 4  |-  ( ( W  e.  NrmCVec  /\  ( A S ( T `  B ) )  e.  ( BaseSet `  W )
)  ->  ( ( A S ( T `  B ) ) ( +v `  W ) ( 0vec `  W
) )  =  ( A S ( T `
 B ) ) )
3426, 32, 33syl2anc 642 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( ( A S ( T `  B
) ) ( +v
`  W ) (
0vec `  W )
)  =  ( A S ( T `  B ) ) )
3525, 34eqtrd 2328 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( ( A S ( T `  B
) ) ( +v
`  W ) ( T `  ( 0vec `  U ) ) )  =  ( A S ( T `  B
) ) )
3616, 21, 353eqtr3d 2336 1  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  ( A  e.  CC  /\  B  e.  X ) )  -> 
( T `  ( A R B ) )  =  ( A S ( T `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159   0veccn0v 21160    LnOp clno 21334
This theorem is referenced by:  nmlno0lem  21387  nmblolbii  21393  blocnilem  21398  ubthlem2  21466
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055  df-neg 9056  df-grpo 20874  df-gid 20875  df-ginv 20876  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172  df-lno 21338
  Copyright terms: Public domain W3C validator