HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem2 Unicode version

Theorem lnopeq0lem2 22602
Description: Lemma for lnopeq0i 22603. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopeq0.1  |-  T  e. 
LinOp
Assertion
Ref Expression
lnopeq0lem2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( T `  A )  .ih  B
)  =  ( ( ( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) )

Proof of Theorem lnopeq0lem2
StepHypRef Expression
1 fveq2 5541 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  A )  =  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )
21oveq1d 5889 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  .ih  B )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  B ) )
3 oveq1 5881 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  +h  B )  =  ( if ( A  e.  ~H ,  A ,  0h )  +h  B
) )
43fveq2d 5545 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  +h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) ) )
54, 3oveq12d 5892 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  +h  B ) ) 
.ih  ( A  +h  B ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) ) )
6 oveq1 5881 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  -h  B )  =  ( if ( A  e.  ~H ,  A ,  0h )  -h  B
) )
76fveq2d 5545 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  -h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )
87, 6oveq12d 5892 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )
95, 8oveq12d 5892 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  ( A  +h  B
) )  .ih  ( A  +h  B ) )  -  ( ( T `
 ( A  -h  B ) )  .ih  ( A  -h  B
) ) )  =  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) ) )
10 oveq1 5881 . . . . . . . . 9  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  +h  ( _i  .h  B ) )  =  ( if ( A  e.  ~H ,  A ,  0h )  +h  (
_i  .h  B )
) )
1110fveq2d 5545 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  +h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) ) )
1211, 10oveq12d 5892 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( A  +h  ( _i  .h  B
) ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) ) )
13 oveq1 5881 . . . . . . . . 9  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  -h  ( _i  .h  B ) )  =  ( if ( A  e.  ~H ,  A ,  0h )  -h  (
_i  .h  B )
) )
1413fveq2d 5545 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  -h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) )
1514, 13oveq12d 5892 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) )
1612, 15oveq12d 5892 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  ( A  +h  (
_i  .h  B )
) )  .ih  ( A  +h  ( _i  .h  B ) ) )  -  ( ( T `
 ( A  -h  ( _i  .h  B
) ) )  .ih  ( A  -h  (
_i  .h  B )
) ) )  =  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) )
1716oveq2d 5890 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
_i  x.  ( (
( T `  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( A  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( A  -h  (
_i  .h  B )
) )  .ih  ( A  -h  ( _i  .h  B ) ) ) ) )  =  ( _i  x.  ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) ) )
189, 17oveq12d 5892 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  =  ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) ) )
1918oveq1d 5889 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( ( T `  ( A  +h  B ) ) 
.ih  ( A  +h  B ) )  -  ( ( T `  ( A  -h  B
) )  .ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( A  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( A  -h  (
_i  .h  B )
) )  .ih  ( A  -h  ( _i  .h  B ) ) ) ) ) )  / 
4 )  =  ( ( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) )
202, 19eqeq12d 2310 . 2  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  A )  .ih  B
)  =  ( ( ( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  /  4
)  <->  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  B )  =  ( ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) ) )
21 oveq2 5882 . . 3  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( B  e.  ~H ,  B ,  0h )
) )
22 oveq2 5882 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  +h  B )  =  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )
2322fveq2d 5545 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) ) )
2423, 22oveq12d 5892 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) ) )
25 oveq2 5882 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  -h  B )  =  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) )
2625fveq2d 5545 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) ) )
2726, 25oveq12d 5892 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )
2824, 27oveq12d 5892 . . . . 5  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )  =  ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
29 oveq2 5882 . . . . . . . . . 10  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
_i  .h  B )  =  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) )
3029oveq2d 5890 . . . . . . . . 9  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) )  =  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )
3130fveq2d 5545 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
3231, 30oveq12d 5892 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) )
3329oveq2d 5890 . . . . . . . . 9  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) )  =  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )
3433fveq2d 5545 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
3534, 33oveq12d 5892 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) )
3632, 35oveq12d 5892 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) )  =  ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  -  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) ) )
3736oveq2d 5890 . . . . 5  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
_i  x.  ( (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) )  =  ( _i  x.  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  -  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) ) ) )
3828, 37oveq12d 5892 . . . 4  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  =  ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) ) )
3938oveq1d 5889 . . 3  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  /  4
)  =  ( ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) )  /  4
) )
4021, 39eqeq12d 2310 . 2  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  =  ( ( ( ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) ) )  /  4 )  <-> 
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( B  e.  ~H ,  B ,  0h ) )  =  ( ( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) )  /  4
) ) )
41 lnopeq0.1 . . 3  |-  T  e. 
LinOp
42 ax-hv0cl 21599 . . . 4  |-  0h  e.  ~H
4342elimel 3630 . . 3  |-  if ( A  e.  ~H ,  A ,  0h )  e.  ~H
4442elimel 3630 . . 3  |-  if ( B  e.  ~H ,  B ,  0h )  e.  ~H
4541, 43, 44lnopeq0lem1 22601 . 2  |-  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( B  e.  ~H ,  B ,  0h ) )  =  ( ( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) )  /  4
)
4620, 40, 45dedth2h 3620 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( T `  A )  .ih  B
)  =  ( ( ( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ifcif 3578   ` cfv 5271  (class class class)co 5874   _ici 8755    + caddc 8756    x. cmul 8758    - cmin 9053    / cdiv 9439   4c4 9813   ~Hchil 21515    +h cva 21516    .h csm 21517    .ih csp 21518   0hc0v 21520    -h cmv 21521   LinOpclo 21543
This theorem is referenced by:  lnopeq0i  22603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-hilex 21595  ax-hfvadd 21596  ax-hvass 21598  ax-hv0cl 21599  ax-hvaddid 21600  ax-hfvmul 21601  ax-hvmulid 21602  ax-hvdistr2 21605  ax-hvmul0 21606  ax-hfi 21674  ax-his1 21677  ax-his2 21678  ax-his3 21679
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-2 9820  df-3 9821  df-4 9822  df-cj 11600  df-re 11601  df-im 11602  df-hvsub 21567  df-lnop 22437
  Copyright terms: Public domain W3C validator