HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmi Structured version   Unicode version

Theorem lnophmi 23526
Description: A linear operator is Hermitian if  x  .ih  ( T `  x ) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophm.1  |-  T  e. 
LinOp
lnophm.2  |-  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR
Assertion
Ref Expression
lnophmi  |-  T  e. 
HrmOp
Distinct variable group:    x, T

Proof of Theorem lnophmi
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnophm.1 . . 3  |-  T  e. 
LinOp
21lnopfi 23477 . 2  |-  T : ~H
--> ~H
3 oveq1 6091 . . . . 5  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( y  .ih  ( T `  z )
)  =  ( if ( y  e.  ~H ,  y ,  0h )  .ih  ( T `  z ) ) )
4 fveq2 5731 . . . . . 6  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( T `  y
)  =  ( T `
 if ( y  e.  ~H ,  y ,  0h ) ) )
54oveq1d 6099 . . . . 5  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( ( T `  y )  .ih  z
)  =  ( ( T `  if ( y  e.  ~H , 
y ,  0h )
)  .ih  z )
)
63, 5eqeq12d 2452 . . . 4  |-  ( y  =  if ( y  e.  ~H ,  y ,  0h )  -> 
( ( y  .ih  ( T `  z ) )  =  ( ( T `  y ) 
.ih  z )  <->  ( if ( y  e.  ~H ,  y ,  0h )  .ih  ( T `  z ) )  =  ( ( T `  if ( y  e.  ~H ,  y ,  0h ) )  .ih  z
) ) )
7 fveq2 5731 . . . . . 6  |-  ( z  =  if ( z  e.  ~H ,  z ,  0h )  -> 
( T `  z
)  =  ( T `
 if ( z  e.  ~H ,  z ,  0h ) ) )
87oveq2d 6100 . . . . 5  |-  ( z  =  if ( z  e.  ~H ,  z ,  0h )  -> 
( if ( y  e.  ~H ,  y ,  0h )  .ih  ( T `  z ) )  =  ( if ( y  e.  ~H ,  y ,  0h )  .ih  ( T `  if ( z  e.  ~H ,  z ,  0h ) ) ) )
9 oveq2 6092 . . . . 5  |-  ( z  =  if ( z  e.  ~H ,  z ,  0h )  -> 
( ( T `  if ( y  e.  ~H ,  y ,  0h ) )  .ih  z
)  =  ( ( T `  if ( y  e.  ~H , 
y ,  0h )
)  .ih  if (
z  e.  ~H , 
z ,  0h )
) )
108, 9eqeq12d 2452 . . . 4  |-  ( z  =  if ( z  e.  ~H ,  z ,  0h )  -> 
( ( if ( y  e.  ~H , 
y ,  0h )  .ih  ( T `  z
) )  =  ( ( T `  if ( y  e.  ~H ,  y ,  0h ) )  .ih  z
)  <->  ( if ( y  e.  ~H , 
y ,  0h )  .ih  ( T `  if ( z  e.  ~H ,  z ,  0h ) ) )  =  ( ( T `  if ( y  e.  ~H ,  y ,  0h ) )  .ih  if ( z  e.  ~H ,  z ,  0h ) ) ) )
11 ax-hv0cl 22511 . . . . . 6  |-  0h  e.  ~H
1211elimel 3793 . . . . 5  |-  if ( y  e.  ~H , 
y ,  0h )  e.  ~H
1311elimel 3793 . . . . 5  |-  if ( z  e.  ~H , 
z ,  0h )  e.  ~H
14 lnophm.2 . . . . 5  |-  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR
1512, 13, 1, 14lnophmlem2 23525 . . . 4  |-  ( if ( y  e.  ~H ,  y ,  0h )  .ih  ( T `  if ( z  e.  ~H ,  z ,  0h ) ) )  =  ( ( T `  if ( y  e.  ~H ,  y ,  0h ) )  .ih  if ( z  e.  ~H ,  z ,  0h ) )
166, 10, 15dedth2h 3783 . . 3  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  .ih  ( T `  z )
)  =  ( ( T `  y ) 
.ih  z ) )
1716rgen2a 2774 . 2  |-  A. y  e.  ~H  A. z  e. 
~H  ( y  .ih  ( T `  z ) )  =  ( ( T `  y ) 
.ih  z )
18 elhmop 23381 . 2  |-  ( T  e.  HrmOp 
<->  ( T : ~H --> ~H  /\  A. y  e. 
~H  A. z  e.  ~H  ( y  .ih  ( T `  z )
)  =  ( ( T `  y ) 
.ih  z ) ) )
192, 17, 18mpbir2an 888 1  |-  T  e. 
HrmOp
Colors of variables: wff set class
Syntax hints:    = wceq 1653    e. wcel 1726   A.wral 2707   ifcif 3741   -->wf 5453   ` cfv 5457  (class class class)co 6084   RRcr 8994   ~Hchil 22427    .ih csp 22430   0hc0v 22432   LinOpclo 22455   HrmOpcho 22458
This theorem is referenced by:  lnophm  23527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-hilex 22507  ax-hfvadd 22508  ax-hvcom 22509  ax-hvass 22510  ax-hv0cl 22511  ax-hvaddid 22512  ax-hfvmul 22513  ax-hvmulid 22514  ax-hvmulass 22515  ax-hvdistr1 22516  ax-hvdistr2 22517  ax-hvmul0 22518  ax-hfi 22586  ax-his1 22589  ax-his2 22590  ax-his3 22591
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-po 4506  df-so 4507  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-2 10063  df-3 10064  df-4 10065  df-cj 11909  df-re 11910  df-im 11911  df-hvsub 22479  df-lnop 23349  df-hmop 23352
  Copyright terms: Public domain W3C validator