Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnr2i Structured version   Unicode version

Theorem lnr2i 27299
Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
lnr2i.u  |-  U  =  (LIdeal `  R )
lnr2i.n  |-  N  =  (RSpan `  R )
Assertion
Ref Expression
lnr2i  |-  ( ( R  e. LNoeR  /\  I  e.  U )  ->  E. g  e.  ( ~P I  i^i 
Fin ) I  =  ( N `  g
) )
Distinct variable groups:    g, I    g, N    R, g    U, g

Proof of Theorem lnr2i
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2 lnr2i.u . . . . . 6  |-  U  =  (LIdeal `  R )
3 lnr2i.n . . . . . 6  |-  N  =  (RSpan `  R )
41, 2, 3islnr2 27297 . . . . 5  |-  ( R  e. LNoeR 
<->  ( R  e.  Ring  /\ 
A. i  e.  U  E. g  e.  ( ~P ( Base `  R
)  i^i  Fin )
i  =  ( N `
 g ) ) )
54simprbi 452 . . . 4  |-  ( R  e. LNoeR  ->  A. i  e.  U  E. g  e.  ( ~P ( Base `  R
)  i^i  Fin )
i  =  ( N `
 g ) )
6 eqeq1 2444 . . . . . 6  |-  ( i  =  I  ->  (
i  =  ( N `
 g )  <->  I  =  ( N `  g ) ) )
76rexbidv 2728 . . . . 5  |-  ( i  =  I  ->  ( E. g  e.  ( ~P ( Base `  R
)  i^i  Fin )
i  =  ( N `
 g )  <->  E. g  e.  ( ~P ( Base `  R )  i^i  Fin ) I  =  ( N `  g )
) )
87rspcva 3052 . . . 4  |-  ( ( I  e.  U  /\  A. i  e.  U  E. g  e.  ( ~P ( Base `  R )  i^i  Fin ) i  =  ( N `  g
) )  ->  E. g  e.  ( ~P ( Base `  R )  i^i  Fin ) I  =  ( N `  g )
)
95, 8sylan2 462 . . 3  |-  ( ( I  e.  U  /\  R  e. LNoeR )  ->  E. g  e.  ( ~P ( Base `  R
)  i^i  Fin )
I  =  ( N `
 g ) )
109ancoms 441 . 2  |-  ( ( R  e. LNoeR  /\  I  e.  U )  ->  E. g  e.  ( ~P ( Base `  R )  i^i  Fin ) I  =  ( N `  g )
)
11 lnrrng 27295 . . . . . . . . . . . 12  |-  ( R  e. LNoeR  ->  R  e.  Ring )
123, 1rspssid 16296 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  g  C_  ( Base `  R
) )  ->  g  C_  ( N `  g
) )
1311, 12sylan 459 . . . . . . . . . . 11  |-  ( ( R  e. LNoeR  /\  g  C_  ( Base `  R
) )  ->  g  C_  ( N `  g
) )
1413ex 425 . . . . . . . . . 10  |-  ( R  e. LNoeR  ->  ( g  C_  ( Base `  R )  ->  g  C_  ( N `  g ) ) )
15 vex 2961 . . . . . . . . . . 11  |-  g  e. 
_V
1615elpw 3807 . . . . . . . . . 10  |-  ( g  e.  ~P ( Base `  R )  <->  g  C_  ( Base `  R )
)
1715elpw 3807 . . . . . . . . . 10  |-  ( g  e.  ~P ( N `
 g )  <->  g  C_  ( N `  g ) )
1814, 16, 173imtr4g 263 . . . . . . . . 9  |-  ( R  e. LNoeR  ->  ( g  e. 
~P ( Base `  R
)  ->  g  e.  ~P ( N `  g
) ) )
1918anim1d 549 . . . . . . . 8  |-  ( R  e. LNoeR  ->  ( ( g  e.  ~P ( Base `  R )  /\  g  e.  Fin )  ->  (
g  e.  ~P ( N `  g )  /\  g  e.  Fin ) ) )
20 elin 3532 . . . . . . . 8  |-  ( g  e.  ( ~P ( Base `  R )  i^i 
Fin )  <->  ( g  e.  ~P ( Base `  R
)  /\  g  e.  Fin ) )
21 elin 3532 . . . . . . . 8  |-  ( g  e.  ( ~P ( N `  g )  i^i  Fin )  <->  ( g  e.  ~P ( N `  g )  /\  g  e.  Fin ) )
2219, 20, 213imtr4g 263 . . . . . . 7  |-  ( R  e. LNoeR  ->  ( g  e.  ( ~P ( Base `  R )  i^i  Fin )  ->  g  e.  ( ~P ( N `  g )  i^i  Fin ) ) )
23 pweq 3804 . . . . . . . . . 10  |-  ( I  =  ( N `  g )  ->  ~P I  =  ~P ( N `  g )
)
2423ineq1d 3543 . . . . . . . . 9  |-  ( I  =  ( N `  g )  ->  ( ~P I  i^i  Fin )  =  ( ~P ( N `  g )  i^i  Fin ) )
2524eleq2d 2505 . . . . . . . 8  |-  ( I  =  ( N `  g )  ->  (
g  e.  ( ~P I  i^i  Fin )  <->  g  e.  ( ~P ( N `  g )  i^i  Fin ) ) )
2625imbi2d 309 . . . . . . 7  |-  ( I  =  ( N `  g )  ->  (
( g  e.  ( ~P ( Base `  R
)  i^i  Fin )  ->  g  e.  ( ~P I  i^i  Fin )
)  <->  ( g  e.  ( ~P ( Base `  R )  i^i  Fin )  ->  g  e.  ( ~P ( N `  g )  i^i  Fin ) ) ) )
2722, 26syl5ibrcom 215 . . . . . 6  |-  ( R  e. LNoeR  ->  ( I  =  ( N `  g
)  ->  ( g  e.  ( ~P ( Base `  R )  i^i  Fin )  ->  g  e.  ( ~P I  i^i  Fin ) ) ) )
2827imdistand 675 . . . . 5  |-  ( R  e. LNoeR  ->  ( ( I  =  ( N `  g )  /\  g  e.  ( ~P ( Base `  R )  i^i  Fin ) )  ->  (
I  =  ( N `
 g )  /\  g  e.  ( ~P I  i^i  Fin ) ) ) )
29 ancom 439 . . . . 5  |-  ( ( g  e.  ( ~P ( Base `  R
)  i^i  Fin )  /\  I  =  ( N `  g )
)  <->  ( I  =  ( N `  g
)  /\  g  e.  ( ~P ( Base `  R
)  i^i  Fin )
) )
30 ancom 439 . . . . 5  |-  ( ( g  e.  ( ~P I  i^i  Fin )  /\  I  =  ( N `  g )
)  <->  ( I  =  ( N `  g
)  /\  g  e.  ( ~P I  i^i  Fin ) ) )
3128, 29, 303imtr4g 263 . . . 4  |-  ( R  e. LNoeR  ->  ( ( g  e.  ( ~P ( Base `  R )  i^i 
Fin )  /\  I  =  ( N `  g ) )  -> 
( g  e.  ( ~P I  i^i  Fin )  /\  I  =  ( N `  g ) ) ) )
3231reximdv2 2817 . . 3  |-  ( R  e. LNoeR  ->  ( E. g  e.  ( ~P ( Base `  R )  i^i  Fin ) I  =  ( N `  g )  ->  E. g  e.  ( ~P I  i^i  Fin ) I  =  ( N `  g )
) )
3332adantr 453 . 2  |-  ( ( R  e. LNoeR  /\  I  e.  U )  ->  ( E. g  e.  ( ~P ( Base `  R
)  i^i  Fin )
I  =  ( N `
 g )  ->  E. g  e.  ( ~P I  i^i  Fin )
I  =  ( N `
 g ) ) )
3410, 33mpd 15 1  |-  ( ( R  e. LNoeR  /\  I  e.  U )  ->  E. g  e.  ( ~P I  i^i 
Fin ) I  =  ( N `  g
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   ` cfv 5456   Fincfn 7111   Basecbs 13471   Ringcrg 15662  LIdealclidl 16244  RSpancrsp 16245  LNoeRclnr 27292
This theorem is referenced by:  hbtlem6  27312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-sca 13547  df-vsca 13548  df-0g 13729  df-mnd 14692  df-grp 14814  df-minusg 14815  df-sbg 14816  df-subg 14943  df-mgp 15651  df-rng 15665  df-ur 15667  df-subrg 15868  df-lmod 15954  df-lss 16011  df-lsp 16050  df-sra 16246  df-rgmod 16247  df-lidl 16248  df-rsp 16249  df-lfig 27145  df-lnm 27153  df-lnr 27293
  Copyright terms: Public domain W3C validator