MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1add Structured version   Unicode version

Theorem lo1add 12451
Description: The sum of two eventually upper bounded functions is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
o1add2.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
lo1add.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_ O ( 1 ) )
lo1add.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_ O ( 1 ) )
Assertion
Ref Expression
lo1add  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  <_ O ( 1 ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem lo1add
Dummy variables  m  c  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1add.3 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_ O ( 1 ) )
2 lo1add.4 . 2  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_ O ( 1 ) )
3 reeanv 2881 . . . 4  |-  ( E. m  e.  RR  E. n  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m )  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) )  <-> 
( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) )
4 o1add2.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
54ralrimiva 2795 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  B  e.  V )
6 dmmptg 5396 . . . . . . . . . 10  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
75, 6syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
8 lo1dm 12344 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  e.  <_ O
( 1 )  ->  dom  ( x  e.  A  |->  B )  C_  RR )
91, 8syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
107, 9eqsstr3d 3369 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
1110adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  A  C_  RR )
12 rexanre 12181 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( B  <_  m  /\  C  <_  n ) )  <-> 
( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) ) )
1311, 12syl 16 . . . . . 6  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) ) )
14 readdcl 9104 . . . . . . . . 9  |-  ( ( m  e.  RR  /\  n  e.  RR )  ->  ( m  +  n
)  e.  RR )
1514adantl 454 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( m  +  n
)  e.  RR )
164, 1lo1mptrcl 12446 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
1716adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  B  e.  RR )
18 o1add2.2 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
1918, 2lo1mptrcl 12446 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
2019adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  C  e.  RR )
21 simplrl 738 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  m  e.  RR )
22 simplrr 739 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  n  e.  RR )
23 le2add 9541 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  C  e.  RR )  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( ( B  <_  m  /\  C  <_  n
)  ->  ( B  +  C )  <_  (
m  +  n ) ) )
2417, 20, 21, 22, 23syl22anc 1186 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  (
( B  <_  m  /\  C  <_  n )  ->  ( B  +  C )  <_  (
m  +  n ) ) )
2524imim2d 51 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  (
( c  <_  x  ->  ( B  <_  m  /\  C  <_  n ) )  ->  ( c  <_  x  ->  ( B  +  C )  <_  (
m  +  n ) ) ) )
2625ralimdva 2790 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  ->  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  (
m  +  n ) ) ) )
27 breq2 4241 . . . . . . . . . . 11  |-  ( p  =  ( m  +  n )  ->  (
( B  +  C
)  <_  p  <->  ( B  +  C )  <_  (
m  +  n ) ) )
2827imbi2d 309 . . . . . . . . . 10  |-  ( p  =  ( m  +  n )  ->  (
( c  <_  x  ->  ( B  +  C
)  <_  p )  <->  ( c  <_  x  ->  ( B  +  C )  <_  ( m  +  n ) ) ) )
2928ralbidv 2731 . . . . . . . . 9  |-  ( p  =  ( m  +  n )  ->  ( A. x  e.  A  ( c  <_  x  ->  ( B  +  C
)  <_  p )  <->  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  ( m  +  n ) ) ) )
3029rspcev 3058 . . . . . . . 8  |-  ( ( ( m  +  n
)  e.  RR  /\  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  ( m  +  n ) ) )  ->  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p ) )
3115, 26, 30ee12an 1373 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  ->  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p
) ) )
3231reximdv 2823 . . . . . 6  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p
) ) )
3313, 32sylbird 228 . . . . 5  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p
) ) )
3433rexlimdvva 2843 . . . 4  |-  ( ph  ->  ( E. m  e.  RR  E. n  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p
) ) )
353, 34syl5bir 211 . . 3  |-  ( ph  ->  ( ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p
) ) )
3610, 16ello1mpt 12346 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_ O ( 1 )  <->  E. c  e.  RR  E. m  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  m ) ) )
37 rexcom 2875 . . . . 5  |-  ( E. c  e.  RR  E. m  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m )  <->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  m ) )
3836, 37syl6bb 254 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_ O ( 1 )  <->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  m ) ) )
3910, 19ello1mpt 12346 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. 
<_ O ( 1 )  <->  E. c  e.  RR  E. n  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) ) )
40 rexcom 2875 . . . . 5  |-  ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n )  <->  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) )
4139, 40syl6bb 254 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. 
<_ O ( 1 )  <->  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) ) )
4238, 41anbi12d 693 . . 3  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e.  <_ O ( 1 )  /\  ( x  e.  A  |->  C )  e.  <_ O ( 1 ) )  <->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) ) )
4316, 19readdcld 9146 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  RR )
4410, 43ello1mpt 12346 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  +  C ) )  e. 
<_ O ( 1 )  <->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( B  +  C )  <_  p ) ) )
4535, 42, 443imtr4d 261 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e.  <_ O ( 1 )  /\  ( x  e.  A  |->  C )  e.  <_ O ( 1 ) )  ->  (
x  e.  A  |->  ( B  +  C ) )  e.  <_ O
( 1 ) ) )
461, 2, 45mp2and 662 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  <_ O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   A.wral 2711   E.wrex 2712    C_ wss 3306   class class class wbr 4237    e. cmpt 4291   dom cdm 4907  (class class class)co 6110   RRcr 9020    + caddc 9024    <_ cle 9152   <_ O ( 1 )clo1 12312
This theorem is referenced by:  lo1sub  12455  pntrlog2bndlem4  21305  pntrlog2bndlem5  21306  pntrlog2bndlem6  21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-po 4532  df-so 4533  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-er 6934  df-pm 7050  df-en 7139  df-dom 7140  df-sdom 7141  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-ico 10953  df-lo1 12316
  Copyright terms: Public domain W3C validator